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EDITOR’S FOREWORD

The problem of communicating in a coherent fashion recent develop-
ments in the most exciting and active fields of physics seems partic-
ularly pressing today. The enormous growth in the number of phys-
icists has tended to make the familiar channels of communication
considerably less effective. It has become increasingly difficult for
experts in a given field to keep up with the current literature; the novice
can only be confused. What is needed is both a consistent account of a
field and the presentation of a definite “point of view’ concerning it.
Formal monographs cannot meet such a need in a rapidly developing
field, and, perhaps more important, the review article seems to have
fallen into disfavor. Indeed, it would seem that the people most actively
engaged in developing a given field are the people least likely to write at
length about it.

FRONTIERS IN PHYSICS has been conceived in an effort to
improve the situation in several ways. Leading physicists today fre-
quently give a series of lectures, a graduate seminar, or a graduate
course in their special fields of interest. Such lectures serve to summar-
ize the present status of a rapidly developing field and may well
constitute the only coherent account available at the time. Often, notes
on lectures exist (prepared by the lecturer himself, by graduate stud-
ents, or by postdoctoral fellows) and are distributed in mimeographed
form on a limited basis. One of the principal purposes of the
FRONTIERS IN PHYSICS Series is to make such notes available to
a wider audience of physicists.

It should be emphasized that lecture notes are necessarily rough
and informal, both in style and content; and those in the series will
prove no exception. This is as it should be. The point of the series is to
offer new, rapid, more informal, and, it is hoped, more effective ways
for physicists to teach one another. The point is lost if only elegant
notes qualify.

The publication of collections of reprints of recent articles in very
active fields of physics will improve communication. Such collections
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are themselves useful to people working in the field. The value of the
reprints will, however, be enhanced if the collection is accompanied by
an introduction of moderate length which will serve to tie the collection
together and, necessarily, constitute a brief survey of the present status
of the field. Again, it is appropriate that such an introduction be
informal, in keeping with the active character of the field.

The informal monograph, representing an intermediate step be-
tween lecture notes and formal monographs, offers an author the
opportunity to present his views of a field which has developed to the
point where a summation might prove extraordinarily fruitful but a
formal monograph might not be feasible or desirable.

Contemporary classics constitute a particularly valuable approach
to the teaching and learning of physics today. Here one thinks of fields
that lie at the heart of much of present-day research, but whose
essentials are by now well understcod, such as quantum electrody-
namics or magnetic resonance. In such fields some of the best peda-
gogical material is not readily available, either because it consists of
papers long out of print or lectures that have never been published.

The above words written in August 1961 seem equally applicable
today. The development during the past decade of a quantum theory of
gauge fields represents a significant contribution to our understanding
of elementary particles and their interactions.

The present volume is intended to introduce the reader to the
methods of quantum gauge field theory; the authors both set forth the
basic elements of the theory and provide illustrative applications.

Ludwig Faddeev and Andrei Slavnov are especially well qualified
to write such a book because they have been among the key participants
in the development of the theory.

It is a pleasure to welcome them to the ranks of contributors to this
Series. I would like also to take this opportunity to thank Dr. Edward
Witten of Harvard University for his invaluable assistance in reviewing
and editing the English translation of this volume.

DAviD PINES



PREFACE TO THE ORIGINAL
(RUSSIAN) EDITION

Progress in quantum field theory, during the last ten years, is to a great
extent due to the development of the theory of Yang—Mills fields,
sometimes called gauge fields. These fields open up new possibilities
tor the description of interactions of elementary particles in the
framework of quantum field theory. Gauge fields are involved in most
modern models of strong and also of weak and electromagnetic
interactions. There also arise the extremely attractive prospects of
unification of all the interactions into a single universal interaction.
At the same time the Yang-Mills fields have surely not been
sufficiently considered in modern monographical literature. Although
the Yang-Mills theory seems to be a rather special model from the
point of view of general quantum field theory, it is extremely specific
and the methods used in this theory are quite far from being traditional.
The existing monograph of Konoplyova and Popov, “Gauge Fields,”
deals mainly with the geometrical aspects of the gauge field theory and
illuminates the quantum theory of the Yang-Mills fields insufficiently.
We hope that the present book to some extent will close this gap.
The main technical method, used in the quantum theory of gauge
fields, is the path-integral method. Therefore, much attention is paid in
this book to the description of this alternative approach to the quantum
field theory. We have made an attempt to expound this method in a
sufficiently self-consistent manner, proceeding from the fundamentals
of quantum theory. Nevertheless, for a deeper understanding of the
book it is desirable for the reader to be familiar with the traditional
methods of quantum theory, for example, in the volume of the first four
chapters of the book by N. N. Bogolubov and D. V. Shirkov, “In-
troduction to the Theory of Quantized Fields.” In particular, we shall
not go into details of comparing the Feynman diagrams to the terms of
the perturbation-theory expansion, and of the rigorous substantiation of
the renormalization procedure, based on the R-operation. These prob-
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lems are not specific for the Yang-Mills theory and are presented in
detail in the quoted monograph.

There are many publications on the Yang—Mills fields, and we
shall not go into a detailed review of this literature to any extent. Our
aim is to introduce the methods of the quantum Yang—Mills theory to
the reader. We shall not discuss alternative approaches to this theory,
but shall present in detail that approach, which seems to us the most
simple and natural one. The applications dealt with in the book are
illustrative in character and are not the last word to be said about
applications of the Yang—Mills fields to elementary-particle models.
We do this consciously, since the phenomenological aspects of gauge
theories are developing and changing rapidly. At the same time the
technique of quantization and renormalization of the Yang—Mills fields
has already become well established. Our book is mainly dedicated to
these specific problems.

We are grateful to our colleagues of the V. A. Steclov Mathemat-
ical Institute in Moscow and Leningrad for numerous helpful dis-
cussions of the problems dealt with in this book.

We would especially like to thank D. V. Shirkov and O. L
Zav’yalov who read the manuscript and made many useful comments,
and E. Sh. Yegoryan for help in checking the formulas.

Moscow-Leningrad-Kirovsk L. D. FADDEEV, A. A. SLAVNOV



PREFACE TO THE ENGLISH EDITION

This book was written in the spring of 1977 and published in Russian
in 1978. By that time, the perturbation theory for quantum Yang-Mills
theory had been completed and its relevance for elementary particle
theory also had been generally accepted. We hope that our book covers
all essential features of this development.

Since publication of the Russian edition, several new and exciting
ideas were proposed dealing mainly with the nonperturbative approach
and the problem of quark confinement. In particular, the problem of
gauge ambiguity, lattice formulation of gauge theories, the role of
instanton solutions in quantum dynamics, have been widely discussed.
However, it is our opinion that none of these approaches can be
considered as definitive. For this reason, we decided that it would be
premature to provide any additions to the present English-language
version.

We are grateful to Dr. D. B. Pontecorvo for prompt and faithful
translation into English.

Aspen, Colorado, L. D. FApDEEV, A. A. SLAVNOV
August, 1979
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INTRODUCTION TO QUANTUM THEORY



CHAPTER 1

INTRODUCTION

1.1 BASIC CONCEPTS AND NOTATION

At first sight, the theory of gauge fields which we shall discuss in this
book describes a rather narrow class of quantum-field-theory models.
However, the opinion is becoming more and more popular that this
theory has a chance to become the basis of the theory of elementary
particles. This opinion is based on the following facts:

First, the only theory (quantum electrodynamics) completely
confirmed by experiments is a particular case of the gauge theory.

Second, phenomenological models of weak interactions have
acquired an elegant and self-consistent formulation in the framework of
gauge theories. The phenomenological four-fermion interaction has
been replaced by the interaction with an intermediate vector particle,
the quantum of the Yang—Mills field. Existing experimental data along
with the requirement of gauge invariance led to the prediction of weak
neutral currents and of a new quantum number for hadrons (charm).

Third, it seems that phenomenological quark models of strong
interactions also have their most natural foundation in the framework of
gauge theories. Gauge theories give a unique possibility of describing,
in the framework of quantum field theory, the phenomenon of asymp-
totic freedom. These theories also afford hopes of explaining quark
confinement, although this question is not quite clear.

Finally, the extension of the gauge principle may lead to the
gravitational interaction also being placed in the general scheme of
Yang-Mills fields.

So the possibility arises of explaining, on the basis of one
principle, all the hierarchy of interactions existing in nature. The term

L. D. Faddeev and A. A. Slavnov. Gauge Fields: Introduction to Quantum Theory,
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2 Introduction 1.1

unified field theory, discredited some time ago, now acquires a new
reality in the framework of gauge field theories. Independently of the
question to what extent all these great expectations will be realized, the
theory of Yang-Mills fields is today an essential method in theoretical
physics and without doubt will have an important place in a future
theory of elementary particles.

In the formation of this picture a number of scientists took part. Let
us mention some of the key dates.

In 1953 Yang and Mills, for the first time, generalized the principle
of gauge invariance of the interaction of electric charges for the case of
interacting isospins. In their paper, they introduced a vector field,
which later became known as the Yang-Mills field, and within the
framework of the classical field theory its dynamics was developed.

In 1967 Faddeev and Popov, and de Witt, constructed a self-
consistent scheme for the quantization of massless Yang—Mills fields.
In the same year, Weinberg and Salam independently proposed a
unified gauge model of weak and electromagnetic interactions, in which
the electromagnetic field and the field of the intermediate vector boson
were combined into a multiplet of Yang-Mills fields. This model was
based on the mechanism of mass generation for vector bosons as a
result of a spontaneous symmetry breaking, proposed earlier by Higgs
and Kibble.

In 1971 G. ’t Hooft showed that the general methods of quan-
tization of massless Yang—Mills fields may be applied, practically
without any change, to the case of spontaneously broken symmetry.
Thus, the possibility was discovered of contructing a self-consistent
quantum theory of massive vector fields, which are necessary for the
theory of weak interactions and, in particular, for the Salam—Weinberg
model.

By 1972 the construction of the quantum theory of gauge fields in
the framework of perturbation theory was largely completed. In papers
by A. Slavnov, by J. Taylor, by B. Lee and J. Zinn-Justin, and by
G. ’t Hooft and M. Veltman, various methods of invariant regu-
larization were developed, the generalized Ward identities were ob-
tained, and a renormalization procedure was constructed in the frame-
work of the perturbation theory. This led to the construction of a finite
and unitary scattering matrix for the Yang—Mills field.

Since then on, the theory of gauge fields has developed rapidly,
both theoretically and phenomenologically. The history of this de-
velopment may be illustrated by the rapporteurs’ talks presented at
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international conferences on high-energy physics (B. Lee, 1972,
Batavia; J. Illiopoulos, 1974, London; A. Slavnov, 1976, Thbilisi).
From the above short historical survey we shall pass on to the
description of the Yang-Mills field itself. For this, we must first recal
some notation from the theory of compact Lie groups. More specific-
ally, we shall be interested mainly in the Lie algebras of these groups.
Let © be a compact semisimple Lie group, that is, a compact group
which has no invariant commutative ( Abelian) subgroups. The number
of independent parameters which characterize an arbitrary element of
the group (that is, the dimension) is equal to n. Among the repre-
sentations of this group and its Lie algebra, there exists the representa-
tion of n X n matrices (adjoint representation). It is generated by the
natural action of the group on itself by the similarity transformations

h—oho™!; h, o= Q. (1.1)

Any matrix 7 in the adjoint representation of the Lie algebra can be
represented by a linear combination of n generators,

I =T%" (1.2)

For us it is essential that the generators 7¢ can be normalized by the
condition

tr (T°T%) = — 26%%. (1.3)
In this case the structure constants **° which take part in the condition

[T2, T?]=1T°, (1.4)

are completely antisymmetric. The reader unfamiliar with the theory of
Lie groups may keep in mind just these two relationships, which are
actually a characterizing property of the compact semisimple Lie
group.

A compact semisimple group is called simple if it has no invariant
Lie subgroups. A general semisimple group is a product of simple
groups. This means that the matrices of the Lie algebra in the adjoint
rerpresentation have a block-diagonal form, where each block corre-
sponds to one of the simple factors. The generators of the group can be
chosen so that each one has nonzero matrix elements only within one of
the blocks. We shall always have in mind exactly such a choice of
generators, in correspondence with the structure of the direct product.
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The simplest example of such a group is the simple group SU(2). The
dimension of this group equals 3, the Lie algebra in the adjoint
representation is given by the antisymmetric 3 X 3 matrices; as
generators the matrices

00 0 0 0 1 0 —1 0
T1=(0 0 —1); T2=( 00 0); T3=(1 0 0);
01 0 —1 0 0 0 00
(1.5)

can be chosen; the structure constants ** in this base coincide with the
completely antisymmetric tensor £,

Besides semisimple compact groups, we shall also deal with the
commutative (Abelian) group U(1). The elements of this group are
complex numbers, with absolute values equal to unity. The Lie algebra
of this group is one-dimensional and consists of imaginary numbers or
of real antisymmetric 2 X 2 matrices.

The Yang—Mills field can be associated with any compact semi-
simple Lie group. It is given by the vector field £, (x), with values in
the Lie algebra of this group. It is convenient to consider £, (x) to be
a matrix in the adjoint representation of this algebra. In this case it is
defined by its coefficients A (x):

Sty (x)=Ai(x)T° (1.6)

with respect to the base of the generators 7°.

In the case of the group U(1) the electromagnetic field &£, (x) =
i A, (x) is an analogous object.

We shall now pass on to the definition of the gauge group and its
action on Yang-Mills fields. In the case of electrodynamics the gauge
transformation is actually the well-known gradient transformation

Sy, () > Sy, (%) + 9, (%). (1.7)

Let us recall its origin in the framework of the classical field theory. The
electromagnetic field interacts with charged fields, which are described
by complex functions Y(x). In the equations of motion the field
S, (x) always appears in the following combination:

Vb= (0, — o£,) b =1(0, —I4,) . (1.8)
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The above gradient transformation provides the covariance of this
combination with respect to the phase transformation of the fields y. If
¥ transforms according to the rule

P (x) — et P (x), (1.9)
P (x) > e~ @ (x),

then V, ¢ transforms in the same way. Indeed,

(O — ) b —> [0, — i0uA () — £, ()] e PP (x) = (1.10)
=er0[9, — of, ()] (%).

As a result, the equations of motion are also covariant with respect to
the transformations (1.7) and (1.9); if the pair ¥(x), &£, (x) is a
solution, the e*?y(x), &£, (x) + id A(x) is also a solution.

In other words, a local change in phase of the field Y(x), which can
be considered to be the coordinate in the charge space, is equivalent to
the appearance of an additional electromagnetic field. We see here a
complete analogy with the weak equivalence principle in Einstein’s
theory of gravity, where a change of the coordinate system leads to the
appearance of an additional gravitational field.

Extending this analogy further, one may formulate the relativity
principle in the charge space. This principle was first introduced by
Hermann Weyl in 1929: The field configurations y(x), &¢, (x)and
Y(x)e™™, o, (x) + id A(x) describe the same physical situation. If
the construction of theory is based on this principle, then the above-
described way of constructing the equations of motion in terms of
covariant derivatives is the only possible one.

The generalization of this principle to the case of the more
complicated charge space leads to the Yang—Mills theory. Examples of
such charge (or internal, as they are often called) spaces are the
isotopic space, the unitary-spin space in the theory of hadrons, and so
on. In all these examples we deal with fields Y(x) that acquire values
in the charge space, which itself is a representation space for some
compact semisimple groups Q [SU(2), SU(3), etc.]. The equations of
motion for the fields Y(x) contain the covariant derivative

V, =0, — T (st,), (1.11)

where I'( £, ) is the representation of the matrix &£, corresponding to
the given representation of the group 2. For example, if Q = SU(2),
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and the charge space corresponds to the two-dimensional repre-
sentation, then the above-mentioned generators 7 are represented by
the Pauli matrices

I (%)=, (1.12)

where
“=(14) »=(} ) 7=() ) a3
and in this case
T (sts) = o Al (1.14)

The transformation of the fields (x) analogous to the local phase
transformation in electrodynamics has the following form:

¥ (x) > " () =T [0 ()] (x), (1.15)

where w(x) is a function of x which has its values in the group €. It is
convenient to consider w(x) to be a matrix in the adjoint representation
of the group Q. The derivative (1.11) will be covariant with respect to
this transformation if the field &£, (x) transforms according to the rule

Sy (x) > S () =0 (¥) Fu (1) 0~ () + o (x) 0" (v).  (1.16)

It is not difficult to see that this transformation obeys the group law.
The set of these transformations composes a group which may formally
be denoted by

o=I]a. (1.17)

This group is called the group of gauge transformations.

Often it is convenient to deal with the infinitesimal form of the
gauge transformation. Let the matrices w(x) differ infinitesimally from
the unit matrix

o(x)=14+a(x)=1+4a®(x)T? (1.18)
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where a(x) belongs to the Lie algebra of the group Q. Then the change
of &£, under such a transformation will be

04, =00 — [, a] =V,a, (1.19)
or for the components,
8AL = 0,a° — 1" ABa®. (1.20)
The corresponding transformation for  takes the form

89 =T (a) }. (1.21)

It is obvious that the group of gradient transformations in electro-
dynamics is a particular case of the gauge group.

The existence of covariant derivatives makes it possible to dy-
namically realize the relativity principle in the internal space: The field
configurations ¥(x), s¢, (x) and I'[w(x)]y¥(x), Sy (x) describe the
same physical situation. If we take this principle as a basis for
constructing the dynamics, we then automatically come to the Yang-
Mills theory.

The relativity principle means that not only one set of fields, but a
whole class of gauge-equivalent configurations corresponds to the true
physical configuration. To be clearer, this principle implies that in the
internal charge space there is no special fixed basis with respect to
which the physical fields of matter y are represented in terms of
components: ¥ = (¥,,...,¥,). Such a basis can be introduced locally at
each space-time point; however, there is no physical reason for fixing
its position. The local change of basis is interpreted as a change of the
gauge field, which plays a role analogous to the role of gravitational or
electromagnetic fields.

The relativity principle leads to a significant formal difference in
the description of the dynamics of gauge fields in comparison with more
customary fields such as, for example, the self-interacting scalar field.
In order to work in practice with classes of equivalent configurations,
they must somehow be parametrized, that is, in each class unique
representatives must be chosen. Usually, this is achieved by imposing a
subsidiary condition which eliminates the gauge freedom. This sub-
sidiary condition is called the gauge condition, or simply gauge. The
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most frequently used gauges are the following conditions:

@ =09,.5, =0 (Lorentz gauge),
O, =0,54,=0 (Coulomb gauge),
O, =4,=0 (Hamilton gauge),
O, =;=0 (axial gauge).

(1.22)

For a general system including both fields &£, and fields ¢, the latter
may enter into the gauge condition. Examples of such conditions will be
presented in Section 1.3.

In general the gauge condition ®(4, ¥;x) is a family of functionals
of s£, and ¥, one for each x. For fixed x, ®(4, y; x) is an element of
the Lie algebra of the group G, so the number of independent gauge
conditions coincides with the dimension of the gauge group. In the
examples (1.22) all the conditions are exactly of such a form. Further-
more, in these examples the gauge conditions are local, that is
®(A, ¥; x) depends on the values of £, and ¥ in the neighborhood of
point x.

Let us discuss the requirements to be satisfied by the gauge
conditions. The most important one implies that the system of
equations

@ (A% % x)=0 (1.23)

has a unique solution w(x) for fixed ¢, and y. This requirement
means that in each set of equivalent fields there actually exists a unique
set of fields &£, , ¥ which satisfies the condition (1.23). This set,
considered as a representative of the class, characterizes uniquely the
true physical configuration. Another requirement that is less fun-
damental, although important practically, is that Equation (1.23) must
not be too complicated and should give a sufficiently explicit solution
w(x), at least in the framework of perturbation theory.

Equation (1.23) is a system of nonlinear equations for w(x). For
local gauge conditions it is a nonlinear system of partial differential
equations. For instance, for the Lorentz gauge this system of equations
takes the following form:

Vuly=0,L, — [y, L\]= —0,54y;

(1.24)
L,=o" 0,0,
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and for small &£, and a(x) it is rewritten as
Oa—[s, 0,0l + ... =—03,5, (1.25)

where the dots stand for terms of higher order in a. Equation (1.25) can
be uniquely solved with respect to « in the framework of perturbation
theory if the operator 0 = 0,0, is supplied with suitable boundary
conditions. Such boundary conditions arise in the description of the
dynamics of Yang—Mills fields and will be discussed in Chapter Three.
Nevertheless, beyond the domain of perturbation theory for large fields
S, , the uniqueness of the solution of equation (1.24) may fail.
Discussion of this possibility is not within the scope of this book.

A necessary condition for the solvability of the equations (1.23) is
the nondegeneracy of the corresponding Jacobian. Variation of the
gauge condition under an infinitesimal gauge transformation of «
defines the linear operator M, which acts on a:

Moo — S [%L (042 () — [ (), & (W)]) +

00 (A, P; x)

(1.26)
+ L T @) b )] dy,

This operator plays the role of the Jacobian matrix for the condition
(1.23). Nondegeneracy of the operator M,

det Mo 5= 0 (1.27)

is a necessary condition for the existence of a unique solution for the
system (1.23).

For local gauge conditions M, is a differential operator which is
obtained while linearizing the system (1.23). For example, in the case
of the Lorentz gauge condition, M, = M has the form

Mpo=0a—0d,[s,, a].

This operator is uniquely reversible within the framework of per-
turbation theory provided boundary conditions are introduced. As was
noted above, these conditions will be discussed in Chapter Three.
We shall call the condition (1.27) the admissibility condition for
the gauge condition, and it will be frequently discussed further on.
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1.2. GEOMETRICAL INTERPRETATION OF THE
YANG-MILLS FIELD

The construction described in the previous section allows an elegant
geometrical interpretation when the Yang—Mills fields play the same
role as the Christoffel symbols in gravitation theory. Analogously to the
latter, the Yang—Mills fields describe parallel translation in the charge
space and determine the curvature of this space, the fields ¥(x) being
analogs of tensor fields.

A natural geometrical language for the description of this analogy
is yielded by the fiber-bundle theory. In this theory the concept of
connection in the principle bundle corresponds to the Yang—Mills field.
Although the fiber-bundle theory produces the most adequate language
for axiomatization of the classical field theory, in this book, which is
addressed mainly to physicists, we shall not use it. We just point out
that the general concept of connection, equivalent to the Yang-Mills
field, appeared in the mathematical literature only in 1950, that is,
practically simultaneously with the work of Yang and Mills.

Let us now explain in what sense the Yang—Mills fields determine
parallel translation. Let y(s) be a contour in space-time defined by the
equation

Xy =%, (5). (2.1)

The vector field 7.f(s)' with components

dxy

X, = T 2.2)
is tangential to the curve y(s) at each of its points. We shall say that the
field Y¥(x) undergoes parallel translations along y(s) if at each point of
the contour,

Vb (0 [, ) Xu =0, (2.3)

that is, the covariant derivative in the tangential direction is equal to
zero.

Generally speaking, parallel translation along a closed contour
changes the field Y(x). Let us calculate this change for an infinitesimal
contour. We shall consider a contour which has the form of a
parallelogram with vertices

(%, x + Ax, x4+ Aix 4 Agx, x 4+ Agx).
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It may be readily verified that if the covariant derivative along this
contour is equal to zero, then the total change in ¥(x) corresponding to
a whole turn round the closed contour is equal to

Ao (x) = T (F uv) ¥ (Arx, Aoxy — AjxyAsx,), (2.4)
where
g-p.v =6v'9¢u - ap.'%v + ['54“, -%v]- (25)

Indeed, since the covariant derivative along the side (x, x + A ,x)
is equal to zero, the change in Y(x) corresponding to the change of x
along the first contour equals

Ap (x) =P (x + Arx) — b (¥) = 0, pAx, =T (54,) b (x) Ayx,,.
(2.6)

Performing analogous calculations for the remaining sides of the
parallelogram, and taking into account the linear dependence of
I[(s£,) upon &£, and the fact that [[( £, ), [( &£, )] = I([ o£,,
o/,]), we obtain the formula (2.4) for the total change in ¥(x). This
formula shows that it is natural to call %, the curvature of the charge
space. Under gauge transformations Ay(x) changes in the same way as
¥(x). This is because for the construction of Ay(x) we have used only
the covariant derivative. Then from (2.4) it follows that I'(# ,,(x))
transforms according to the law

T(Fuy () =T (@) T (Fuw (DT (07" (x)). (2.7)

Therefore &,y (x) itself under gauge transformations transforms as
Fuv(@)— o (@) F iy (x) o™ (x). (2.8)

If we adopt the convention that ¥(x) is a vector with respect to gauge
transformations, the ['( & ,, (x)) is a tensor of rank two. And F v (x)
itself is sometimes conveniently considered a vector in the adjoint
representation.

Our indirect derivation of (2.8) is verified by a straightforward
check if one takes advantage of the explicit expression (2.5) for
F v (x) in terms of $¢, (x) and of the transformation law (1.16) for
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Sy (x). Thus we conclude our short description of the geometrical
interpretation of the Yang—Mills fields: They describe parallel trans-
lation of vectors in the charge space, and the tensor &,y (x) is the
curvature tensor of this space. The reader familiar with the theory of
gravity must surely have already noticed the complete analogy between
Sy (x) and Christoffel symbols, and between & ,v (x) and the
curvature tensor of the gravitational field. To conclude this analogy, we
point out that the tensor &,y (x) is the commutator of the covariant
derivatives

F v (0)=[Vy, V] (2.9)
and the Jacobi identity
[V, V4], Vo] + cyclic permutations = O (2.10)
leads to the identity
VoF v (%) + cyclic permutations = 0, (2.11)

where VoF |,y (x) = 0oF uy (x) — [£5 (x), Fuv(x)] , which is the
analog of the Bianchi identity in the theory of gravity. A similar
consideration can be carried out in the case of the Abelian group U(1).
In this case

F v (x) =0y, (x) — Opsty (x) =1 (avAu (x) — 0,4y (x)),
(2.12)

which obviously coincides with the tensor of the electromagnetic field
strength. The interpretation of & ,, (x) as the curvature of the charge
space, originating with Fock and Hermann Wey], is the most natural
approach to the geometrization of the electromagnetic field. Numerous
attempts to relate this field to the geometrical properties of space-time
itself have never had any success.

In concluding this section we shall say a few words about the
classical dynamics of the Yang-Mills field. Our task is to construct a
gauge-invariant Lagrange function coinciding, in the case of the
Abelian group U(1), with the Lagrangian of the electromagnetic field

L =7 FinF uo + Lt (b, V), (2.13)
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where Zum describes the gauge-invariant interaction of the fields
&4, (x) and ¥(x) and is deduced from the free Lagrangian of the fields
V¥ by replacing ordinary derivatives with covariant ones, and e plays the
role of the electric charge. This formula may be easily rewritten in a
more familiar form if one changes the normalization of the fields:

Sty (x) > est, (x). (2.14)
In this case the factor e ? vanishes from the first term, but appears
instead in the expression for the covariant derivative,

Vu — 0, — e&¢u.

In the following we shall use both methods of normalizing the fields
sS4, (x), without specially mentioning this.

A natural (and the only possible) generalization of the formula
(2.13) to the case of the simple non-Abelian gauge group is the
following expression:

& = 5o tr F o F v+ L (0, Vid). (2.15)
The first term may be rewritten also as

b =— ;;—2 FivFiv, (2.16)

where Fiy (x) are the components of the matrix ¥ ,y(x) with respect
to the base 7. Obviously, this Lagrangian is invariant with respect to
the gauge transformations (1.15), (1.16). In the case of the semisimple
group of general form, the Lagrangian contains r arbitrary constants
g, i =1,...,r, where r is the number of invariant simple factors. Then
the formula analogous to (2.16) takes the form

Z= Z — 4g2 FaiFaL, (2.17)

where 7 is the index number of a simple factor.

Contrary to electrodynamics, the Lagrangian (2.16) of the Yang—
Mills field in vacuum (that is, in the absence of the fields ¢), in addition
to the second-order terms in the fields, contains also higher-order
terms. This means that Yang—Mills fields have nontrivial self-
interaction. In other words, quanta of the Yang—Mills field themselves
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have charges, the interaction of which they transfer. The main specific
feature of the Yang~Mills field dynamics is related to this self-action;
therefore we shall often confine ourselves to the model of the Yang-
Mills field in vacuum when dealing with general problems.

The equations of motion arising from the Lagrangian (2.16) for the
Yang—Mills field in vacuum have the form

VuF uv =0, F v — [y, F 5] =0, (2.18)
and written in terms of the ¢,

O ‘9¢v - avau%u + ['%p.a (av‘%u - awﬂv + [.54‘,‘, -54\,] )] -
—au [”u’ ‘%v]=0, (219)

represent a system of second-order equations. These equations are
gauge-invariant in the following sense: If &£, is a solution of (2.19),
then £ is also a solution for any arbitrary w(x). This means that the
standard parametrization of the solutions in terms of the initial
conditions [ s¢,, (x,t), 0o S¢, (x,t) at a fixed ¢] is unfit for the system
(2.19). By imposing the gauge conditions this obstacle is eliminated;
however, the initial conditions are then not arbitrary, but are restricted
by the gauge conditions.

Models of interaction of the Yang—Mills field with fields of matter
will be considered in the next section.

1.3. DYNAMICAL MODELS WITH GAUGE FIELDS

The Lagrangian describing the interaction of the Yang-Mills field with
spinor fields is the simplest one. Let a multiplet of spinor fields ¥,(x)
realize the representation I'(w) of a simple compact gauge group 2.
Then the Lagrangian has the form

L=ZLyy~+ it (x) vV (x) — mp (x) ¥ (x). (3.1)

We have used here the following notation: &'y is the already familiar
Lagrangian of the Yang-Mills field in vacuum,

1
gYM:'sETtrg-uvg.uv' (32)

In the scalar product of two spinors the sum is over the indices
corresponding to internal degrees of freedom; for instance, the mass
term may be written down as
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mp (x) P (x) = iy (x) Pz (x). (3.3)

Furthermore,
(Vb (x))e == Outbr (x) — (T (S, (0))er i (%), (3.4)
where (T (#,))e; = Agi (T (T%))1,, and the matrix (I(7*)),,, which in

the following will be denoted simply by '}, is the matrix of the
generator 7 in the representation realized by the fields ¥(x). Then

B () vV, 0 () = b, () v, (0,%, (x) — A5 (0) T, (%) (3.5)

For example, let the gauge group be Q = SU(2), and the fields
¥(x) realize the fundamental representation of this group. Then

(T () = — 5 A5 (+)us (3.6)

where ¢ are the Pauli matrices, and the complete Lagrangian has the
form

L= — ":?(avAﬁ—auAg—i— BabcAz.Afy)Q-l-
+ iy, (au¢ + é Aﬁr“«p) —mpp. (3.7)

In the case when the gauge group is the group SU(3) and the spinors
Y(x) realize its fundamental (spinor) representation, the analogous
Lagrangian takes the form

&= — 57 (045 — 3,4, + [ ALAYY + (3.8)
+ Py, (%‘P + 5 Aﬁkaw) — mpyp,

where f“* are the structure constants of the group SU(3), and the
matrices A° are the well-known Gell-Mann matrices:

010 0 —i 0 1 00
}”=(1 0 0), k2=(i 0 0), }\43:(0 —1 0);

000 0 00 0 0 0

0 0 1 0 0 —i 000
A4=(0 0 0); 7\,5=(0 0 0)" }mz(o 0 ])’

1 00 i 0 0 010
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00 0 (100
;,_—_(0 0 —i)-, A =_:(0 1 0). 39
! 0i 0 87 M3 \0 0 —2 (3-9)

Renormalization of the fields
AL (x)— gAL (¥) (3.10)

changes the form of Lagrangians (3.7) and (3.8) to a more familiar one,
the g being involved only in the interaction term.

The latter Lagrangian is used, for example, in the theory of strong
interactions. In this case the spinors ¥ are identified with the quark
fields, the Yang-M.ills fields are called “gluons™, and the internal space
is called the space of colors.

In the above-considered examples, when the gauge group is
simple, all interactions are characterized by a single coupling constant.
Such universality of the interactions is a specific feature of the Yang-
Mills theory.

The next useful example is the interaction of the Yang—Mills field
with a scalar field. Let the multiplet of scalar fields ¢,(x) realize a real
representation I'(w) of the simple compact group 2. Then the gauge-
invariant Lagrangian has the form

I 2
L=Zyu+5 Vo — 5 00— V()  (3.11)
where the covariant derivative V¢ is constructed as above

Vuo=0,0— T (s4,) 0, (3.12)

@, as before, is a scalar product in the charge space, and V(¢) is a
form of third and fourth degree in the fields that is invariant with
respect to the group €.

In the case when Q2 = SU(2) and fields ¢ realize the adjoint
representation ¢ = ¢, a = 1, 2, 3, the corresponding formula becomes

1 a a 4 2 a a
L= Zyy+ 5 (0,9° — ge Alo°) — - 9% — A’ (¢°¢°)",
(3.13)

where parameters m and A’ play the role of the masses and of the
contact-interaction coupling constants of the scalar fields. The La-
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grangian (3.13) itself is, evidently, of little interest from the viewpoint
of physical applications; however, an insignificant-looking modification
leads to the extremely interesting possibility of describing massive
vector fields within the framework of the Yang-Mills theory. This
mechanism for the mass generation of the vector field is called the
Higgs effect. We now proceed to discuss this effect.

We shall continue to deal with the gauge group SU(2) as an
example. We first consider the case when the scalar field belongs to the
adjoint representation. We shall use the following Lagrangian:

L= Pyy+ 5 (00 — A (%" — uB2.  (3.14)

This Lagrangian differs from the Lagrangian (3.13) that we examined
earlier by the constant term —A’u* and the sign of the term with ¢
squared. At first sight, the Lagrangian (3.14) describes particles with
imaginary masses, and therefore has no physical meaning. Such a
conclusion, however, would be too hasty. The term with ¢ squared
plays the role of the mass only if ¢ = O is the stable equilibrium point
and is, therefore, the potential-energy minimum. In our case the
potential energy is

a a 1 a a
U, 9)= S [Tlg—z FieFie + 5 Vi9"Vi9 + A2 (29— p?)’] &,
i,k=1,2,3, (3.15)

and the configuration ¢ = 0, 45 = 0 is a saddle point. The
corresponding equilibrium is unstable. However, there exist also stable
equilibrium points; they are the configurations corresponding to zero
A{ and to constant ¢ with a fixed length ¢’ = u’. Such S, ¢ nullify
all the three positive terms which make up the potential energy. (It
should be pointed out that besides these configurations themselves,
gauge transformation of these configurations obviously yields con-
figurations which are also minima. However, owing to the relativity
principle, these configurations present no new physical information,
and we shall not take them into consideration.)

Besides these translation-invariant minima the potential energy
has also other ones, for example, minima corresponding to the 't Hooft-
Polyakov monopoles. The energy values for these configurations,
however, are higher, so they are only local minima.

In order to determine the real masses, it is necessary to expand the
potential energy in Taylor’s series around the true minimum. In our
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case the equilibrium point is degenerate. The minimal configurations
form a two-dimensional sphere S? with points corresponding to direc-
tions of the constant vector ¢. We shall denote these directions by n
and write the corresponding ¢ with the index n, so that ¢, = un. The
degeneracy is eliminated if we reduce the configuration space and take
into consideration only fields ¢ which coincide asymptotically with one
of the ¢, at high |x|.Sucha choice, naturally, destroys the invariance
under SU(2) transformations with constant parameters (isotopic in-
variance). It may be shown that this condition does not contradict the
dynamics, and that theories corresponding to different choices of ¢, are
physically equivalent. The reader familiar with the solid-state physics
will, of course, see here an analogy to the theory of ferromagnetics, in
which a choice of the direction of the spontaneous magnetization must
be made in order to formulate the theory itself.

For definiteness, let us choose the vector n to be directed along the
third axis: n = (0, 0, 1). The corresponding vector ¢, is (0,0,u).

Transition to fields ¢(x) with a zero asymptote at infinity,

Px)—=> 9+ (x) (3.16)

makes the isotopic-symmetry breaking explicit, and the Lagrangian
takes the form

1 m?
L =Zyy+ 5 (V0P + - [(A) + (4] +
+ mi (AL0,9° — 430,9") + gmi [o° [(AL)° + (42)] —

m2 m2g m2 2
—Aulo' A+ ATl — @ — S 0’ (o9 — 28 (pogay,
m 8mj
my=npg; my=24/2 Ap. (3.17)

Although we have explicitly broken isotopic invariance, the Lagrangian
and the boundary conditions are invariant under local gauge trans-
formations with functions w(x) tending to unity at infinity. We shall
give the explicit form of the gauge transformations in new variables,
confining ourselves to infinitesimal transformations:

02 (x) = — ge®v°q® (x) a (x) — m,e%%¢ac (x). (3.18)
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In order to analyze the spectrum of masses generated by the
Lagrangian (3.17), one must choose representatives in gauge-
equivalent classes of fields &£, (x), ¢(x), that is, one must fix the
gauge. It is convenient to choose the following gauge condition:

¢ (x)=0; ¢°(x)=0; 8.4, (x)=0. (3.19)

It can be verified that for sufficiently small ¢3(x) the admissibility
condition is fulfilled. Indeed,

8(0,4%) = 0 @’ — ge”d.[A}a°] (3.20)

and 8¢'? are determined by the formula (3.18). As a result, the
operator M corresponding to our gauge has the form

al 0, — g’ — my, g8o* N /a
1
m(2)=(emmm L, ™ )(#) e
o 0, A%+ A2, — A9, —0,A4, O /\a

uow

At small ¢ the determinant of the operator M is

det M= m2 det 00 + O (9). (3.22)

Since the first term is not zero, in the framework of perturbation
theory det M # 0, and the admissibility condition is fulfilled.

We shall now write down explicitly the quadratic form determining
the mass spectrum

1 a a\2 m2
Lo=—7 (048 — 0,43 + - (A + (4)) +
i m}
T 7000 — 5 @ (323

As is seen, our theory in the classical approximation describes two
massive vector fields, one massless vector field, and one massive scalar
particle. Therefore, indeed, two vector fields have acquired masses;
however, quanta of two scalar fields have disappeared from the list of
particles.

It is not difficult to construct an SU(2)-gauge-invariant model in
which all three vector fields acquire a nonzero mass. For this it is
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necessary to examine the complex scalar field multiplet in the two-
dimensional (spinor) representation

o=(g) o =( @) (3.24)
The gauge-invariant Lagrangian has the form
L=Zyu+ V0 V02 @Te—pA2, (325
where
V0= 0,0 + 5 g7 Ao, (3.26)
and the gauge transformation of the fields ¢ is given by the formula
89 (1) = 57 87°" (1) 9 (). (3.27)

As in the previous case, a stable extremum corresponds to a constant ¢
such that

Prp=p2 (3.28)
We see that in this case the set of stable extrema forms a three-

dimensional sphere S°. In order to remove the degeneracy, we choose
as a minimum

0
¢ (x)= ( " ) : (3.29)
It can be verified that the condition
o1 (¥)=0; Imq,(x)=0 (3.30)
is an admissible gauge. In this gauge there remains only one scalar field,
Re ¢,(x) = (1/\/ 2)a(x). Passing to fields with zero asymptotes at
infinity,

o(x)—> /2 p+ o), (3.31)

we obtain the Lagrangian
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1 m} 1 1
g=—-TFﬁvFﬁv+—2-As ﬁ+76ucrduc—§m§a2+
mng AaAa _]_ g2 2AaAa gmg 3 g2m:22 4
—0c —o0 ——=d— at,
2 e 8 e 4m, 32/)1%
my=-LE; my=2Ap, (3.32)

4/2

which describes the interaction of three massive vector fields and one
massive scalar field.

The above-described mechanism will further be used for con-
struction of unified gauge-invariant models of weak and electromag-
netic interactions. We have finished the discussion of the classical
Yang-Mills theory, and we shall now proceed to its quantization.



CHAPTER 2

QUANTUM THEORY IN TERMS
OF PATH INTEGRALS

There exists several approaches to the quantization of a field theory.
Most frequently, quantization is carried out by the operator method, in
which operators satisfying canonical commutation relations correspond
to classical field configurations. There is, however, another approach,
in which the quantum dynamics is described by the sum over all field
configurations, known as the path integral. Within this approach
Feynman first formulated a self-consistent, manifestly relativistic-
invariant perturbation theory for quantum electrodynamics. This form-
alism has turned out to be most convenient for the quantization of gauge
fields, since the relativity principle is taken into account in the simplest
way: Integration must be performed not over all field configurations,
but only over gauge-equivalent classes.

In this chapter we deal with the general formalism of the path
integral. In the next chapter we shall discuss applications of this
formalism to gauge fields.

2.1. THE PATH INTEGRAL OVER PHASE SPACE

We shall start by demonstrating the main ideas of the path-integral
method, as applied, for example, to nonrelativistic quantum mechanics.
We begin with the case of a system with one degree of freedom.

Let p and g be the canonical momentum and coordinate of a
particle (—> < p < o, —w < g < ), In the operator method of
quantization, corresponding to p and g there are operators P, Q for
which, most frequently, two realizations are used—the coordinate and

L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory,
ISBN 0-8053-9016-2.
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the momentum ones. In the coordinate representation these operators
and their eigenfunctions have the form

1 d
Q=ux; P=T'd_x';
1 \"
l=0(—q5 1p)=(57)" ¢ (1.1

Qlgy=gqlqy;  Plpy=plp).

The transformation functions from the coordinate to the momentum
representation and vice versa are given by the formulas

Cloy=(5)" e @ip=(55)"er. (12

The dynamics of the system is described with the help of the
Hamiltonian function 4(p,q). In quantum mechanics there is a corre-
spondence between this function and the Hamiltonian operator

H=h(P, Q), (1.3)

Here a certain procedure for ordering noncommuting operator argu-
ments P and Q is assumed. We do not here discuss the general problem
of ordering, but we shall come back to it after introducing the concept of
the path integral. The formal reasoning we use does not depend upon
the concrete choice of the ordering procedure. For definiteness, we
shall assume all the P operators to be placed to the left of all the Q
operators.

With such a convention, the matrix element of the Hamiltonian H
between the states (p|, |¢) is explicitly expressed in terms of the
classical Hamiltonian function

IHIg)=(355)" e 7h(p, 9). (1.4)
Our aim is to calculate the evolution operator
U@, t')=exp{—iH (" —t')}. (1.5)
We shall calculate its matrix element

@U@, )qy=
=(q"lexp{—iH{t"—t')}1q)Y={qg",t"|1q', t), (1.6)
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which can be called the kernel of the operator U in the coordinate
representation.

For small £’ — ¢ this is easy to do taking into account the previous
formula. Indeed, in this case

exp{— iH (" — )y = 1 —iH (" — 1), (1.7)

and the matrix element (pj U (¢”,')| g) is approximately equal to

PIUE, O)1gyes ()" 0 (1 —th(p, g) (" — ) o=

= (-21;)/ exp{—ipg —ih(p, q) " — 1)} (1.8)

The kernel of the operator U(¢’, ¢') in the coordinate representation is
easily calculated by means of the transformation function

@, =@ eI e, ) dp=
= —21; S exp{ip(¢” —q')—ik(p, ¢) " — ')} dp. (1.9)

For a finite interval £’ — ¢ this formula is, of course, incorrect. In
this case one may proceed as follows. We divide the interval £’ — ¢ into
N steps, considering

t” — tl
N

Al = (1.10)

to be sufficiently small to use the previous formula for the operator
exp{—iH At}. The operator U(¢', t') is expressed in terms of
exp{—iH At} by the formula

U@, t'y=(exp{— iH A} )N, (1.11)

Replacing each factor to the right by its kernel and integrating over all
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intermediate states, we obtain

@ ue,O)lq)y= SeXP {ilpy Gy —gn-D + ...

ver + 011 — g0l — ilh (PN, gy-1) + .. + A(py, go)] At} X
dpy dpPy_199y_, dp, dq,
X3z o e Tem oy (112)

here gy =q",q0 =9

Now we pass over to the limit N — <, At — 0. The number of
integration variables also approaches infinity, and we can consider that
in the limit we integrate over the values of the functions p(z), g(¢) for all
t in the interval #' < ¢t < t". The function g(t) is subject to the condition

gt)=4q; q")=q". (1.13)

The argument of the exponential function in this limit transforms into
the integral
t/l
A= w0 i0—heo o), (1.14)

t

that is, into the classical action on the interval (¢, ¢''). Thus, we obtain
the main result: the matrix element of the evolution operator is found by
integrating the Feynman functional exp{i4/} over all trajectories p(z),
q(t) in the phase space with fixed values ¢’ and ¢"" at t = ¢’ and
t = t", respectively. The integration measure may be written formally
as

dp” dp (¢) dq (¢)
21 ; 2n

) (1.15)

that is, it is expressed in terms of the product of Liouville measures over
all . We have thus constructed the quantum-mechanical expression in
terms of classical action and measure only.

The same final result

@, g, )y={g" U@, ) q)=

[

= S exp{i S (pg—h(p, q))dt}]__[ dggq (1.16)
t

t’
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would be achieved also if we had used another ordering procedure for
the operator factors. At first sight we have succeeded in unambiguously
constructing quantum mechanics entirely in terms of classical objects
which are canonical invariants. Actually, this cannot be true, since the
whole group of canonical transformations of classical mechanics does
not act in quantum mechanics. The solution of this apparent paradox is
based on the fact that, really, we have not given the definition of the
path integral in internal terms without assuming the limit process. In
order to attach real meaning to the path integral, it is necessary to
define the concrete way to calculate it, and this really is equivalent to
choosing the ordering procedure. In field theory one such method (at
present the only one) is given by perturbation theory. A strict definition
of the path integral in this case will be given subsequently. Meanwhile,
we shall deal with the path integral, considering it to be finite-
dimensional. We hope that formal manipulations with the path integral,
to be encountered below, will help the reader to develop a sufficiently
clear intuitive notion of this object.

Feynman himself used a somewhat different form of the path
integral, namely, the integral over the trajectories in the coordinate
space. The Feynman formula is obtained if the Hamiltonian is quad-
ratic in momenta:

h=;’; + v (g). (1.17)

Indeed, in this case the integration over the variables p can be
carried out explicitly. In the integral

"

SeXP{iS (Pd—-%nz-——v(q)) dt}Hd—’g’Jf—" (1.18)
t

t/
a shift

p (&) = p (&) + mg. (1.19)
must be performed. Then the integration over p and g becomes
separated, and we get the answer

"

q.1"\q, t')=% S exp{ i S (% —0(q)) dt } [[ds. (120
t

b
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P
-1 . dp
N =SeXp{—lS om } 51_—‘- (121)
t t

The normalizing factor N is obviously independent of ¢' and q¢"’ and
is a function only of the time ¢'—¢'. Usually this factor is included in the
definition of measure. From the derivation presented above it is clear
that the second form of the path integral is less general. It is correct only
for Hamiltonians which are quadratic in momenta. However, for most
problems that are interesting from a physical point of view the
Hamiltonian possesses this property, and therefore for these problems
the two forms are equivalent.

The case of a system with many degrees of freedom can be treated
analogously. Using the vector notation

where

p=(ph'--» pn)’ q=(ql""» qn)’

i
. ;. dpdg dp,; dq
”q—zpfq’ gn =]._.[ f;n ’
i i

we can retain the formulas (1.16), (1.20) in this case also.

From the viewpoint of the Hamiltonian dynamics the quantum
field theory is a system with an infinite number of degrees of freedom.
For example, in the case of a scalar neutral field described by the
Lagrangian

(1.22)

Z =1 8,00,0— 2 —V (9), (1.23)

the points in the phase space are pairs of functions ¢(x), m(x) which
form an infinite set of canonical variables. The argument x plays the
role of the index number of these variables. The Poisson brackets are
given by the relations.

{p(*), (¥} =0; {n(x), n(y)
{o(x), n(y)} =08® (x — y)-
There exist many representations for the operators ¢(x) and m(x)
corresponding to ¢(x) and m(x) after quantization. One representation,

the coordinate one, is diagonal for ¢(x); the state vectors are func-
tionals ®(¢(x)) of ¢(x), and

(1.24)

PHO@=0@WP(@); TWP@=F 5@ (125
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More often representations in the Fock space are used, and we shall
mention them below. The Hamiltonian has the form

H(w, ¢)=

- S [@ + %akcp (%) 9,9 (x) + m72q>2 (*) + V(cp)] . (1.26)

It is easy to verify that the Hamiltonian equations of motion

d OH

o ¥ =gy =)
d OH , (1.27)
Grr)=— —é—cMT)=A(p—V () — m’p

do indeed coincide with the usual equation for the scalar field

0@+ mlo=—V'(9). (1.28)

The formulas obtained, which express the evolution operator in terms
of the path integral, can be directly applied to this case also. In the
coordinate representation we have

(@ (%), 19" (%), ) =(@" (¥) | exp{—iH " — ')} | ¢’ (%)) =

—{exp {i | = 0000, 0 — 22D — L 00 (x, 07 —
}

_ m2cp?2(x, n V(g (x, t))] d%cdt}H dn(x, 1) do (x, 1) _
x, t

21

=Wl Sexp{ i S Z () d‘*x}H do (x)
v <xo <t @ t")=9"(x); o t)=0¢ (x). (1.29)

In the second formula we have used relativistic notation x = (x,t). The
only thing in this formula which is not Lorentz invariant is the domain
of integration over t' < x, < ¢"". Eventually we shall be interested in the
evolution operator for an infinite time interval, since it is precisely this
operator which is needed for construction of the scattering matrix,
defined by the formula

S=lim etHt"e—iH@"~t")p=its’
o € ’ (1.30)

t"-» =00
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Here H, is the energy operator for free motion; it is obtained from H by
omitting the interaction term V{(g).

The representation we used before is inconvenient for calculating
this limit, because the expression for the operator exp{—iH,¢} in this
representation is rather cumbersome. A more convenient one is the so-
called holomorphic representation, in which the creation operators are
diagonal. The next section is devoted to the discussion of this rep-
resentation.

2.2. THE PATH INTEGRAL IN THE HOLOMORPHIC
REPRESENTATION

We shall again begin with the case of one degree of freedom. Let us
consider, as an example, a harmonic oscillator with the Hamiltonian

h(p, q) =2 42, 2.1)

We introduce complex coordinates

*

1
@' == (eg—ith a="gr @I+ipk @2

in terms of these coordinates the Hamiltonian has the form 2 = wa*a.
In quantum mechanics to these coordinates correspond operators,
which are conjugates of each other and obey the commutation rules

[a, a']1=1. (2.3)

These commutation relations have a representation in the space of
analytic functions f (a*) with the scalar product

% * v, da*d
(i, 1= (@) o (@)emore 2242 (2.4)
The operators a* and a act in the following way:

@' f(@)=a'f @) af (@)= (@). (2.5)

Here we use the relation

da*da __ dpdq
2ni ~ 2m (2:6)

The introduced scalar product is positive definite. Indeed, any arbitrary
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analytic function f(a*) is a linear combination of the monomials

(a*)"

P, (@) = ik (2.7)

A simple calculation shows that these monomials are orthonormalized:

da* da
25

1 n (o*\" p—a*a
<¢n|¢m>= vmsa (@)"e

e 2n
= '\/ ll 1 S p dp S depﬂ+mei9("‘m)e—92 ____{ 0, ns~=m,
mlnl = 0 0 I nenm,

(2.8)

whence there follows the positive definiteness of the scalar product.
It is also clear that the operators a* and a are conjugates of each
other. Indeed, taking into account that

d

a*e—-a*a _— e—a*a.

-4 . L iy =0, 2.9)

and integrating by parts, we have

(i o= (1 @) "y (@) oo 2202 _

25

= [ @ @) @] e-eratede

2mi

=\ (& 11@) h@e e 289 @, 1y, (210)

There are two ways to describe arbitrary operators in this repre-
sentation. First, an arbitrary operator A can be represented by an
integral operator with a kernel 4 (a*,a)

(4f) (a‘)=SA(a a) [ (a) e—ote 4% 4o (2.11)

Tomi

The kernel A(a*,a) is expressed in terms of the matrix elements of the
operator 4 in the basis ¢, if

Anm =Y | A bpm), (2.12)
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then

a™

(2.13)

* I (a*)”
A(a,a)_anAm WY

This formula defines A(a*, a) as an analytic function of two
complex variables, a*, a which are not necessary conjugates of each
other.

The convolution of the kernels corresponds to the product of the
operators A, and A,:

) @, = 4@, ) A, dewe 222 (2.14)

The second representation for operators is simply the definition of an
operator in the form of a normally ordered polynomial in operators a*
and a. A product in which all operators a* are placed to the left of all
operators a is called a normal product. Let us examine the kernel of an
operator A, given in terms of a sum of normal products:

A=) Kun (@) a™ (2.15)
n,m
This operator can be associated with a function
K@, a)= Y Kun(a)*a™, (2.16)
n,m

We shall call this function the normal symbol of the operator A. Then
the kernel A(a*, a) of the operator A is related to K(a*, a) by the
formula

A (a*, a) = e K (a7, a). (2.17)
For a check we shall consider, as an operator A, the monomial
A= (a)d, (2.18)
so that

K(a', a)=(a"*d (2.19)
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and

Anm=<¢n|A|¢m>=

1 d ¥ d ., da*da
= 1/r;'l_m—!S da*) ( da*) a) ) e omi
=Ann—1)...(n—k+1) A/mm—1)...(n—1+1) X
XO8(n=k)8(m=10)08,_p, m—t, (2.20)

where

0, if n<k,
b@ZR=0 1 i na>rk

We shall now construct A(a*, a), using the formula (2.13). We have

A, =) Ap " ghe = (@) a' P LT =

n,.m

= (a")* a’ exp {a"a}. (2.21)

The formula (2.17) is thus verified. The formulas (2.17) and (2.14)
allow us in a simple way to construct the evolution operator in the form
of a path integral over the functions a*(¢) and a(¢). The corresponding
derivation is actually a repetition of the reasoning of Section 2.1.

Let the Hamiltonian be given in the form

H=h(a" a), (2.22)

where a normal ordering is assumed. Then the kernel U(a*, a, At) of
the evolution operator

U (At) =-exp {— iHAt} (2.23)

for small At takes the following form:

U’ a, At)=exp{a’a—ih(a", a)At}. (2.24)
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For an arbitrary interval ¢t — t' = NAt we must calculate the
convolution of N such kernels:

U@, a; t"—t)=
= S exp{[ayay_,—ay_ay_,+ ... —aja, + aa] —

(2.25)

H

da; da,
£11)

N-1
—i[h(ay, ay_ )+ ... +k(a}, a))] At}H :
k=1

where we have denoted a, = a, ay = a*. The formal limit as At — 0
and N — « is expressed by

U@, a; t" —t')= S exp{a* (t")a (")} X
(2.26)

tll
X . . * da*da
Xexp{g(—aa—th(a,a))dt} t o

b
or, after symmetrizing in a* and a,
U@, a; 1" —t)=
1 * ” ” * 4 7
= (e { L@ ae)+a@)awn}x
t/l

X exp{ i S [% (@"a—a*a) — h (a",a)] dt } H d‘;;fa . (227

¢

Here it is assumed that a*(¢t"') = a* and a(t') = a. We may point out
that the latter formula differs insignificantly from the corresponding
formula (1.16) of the previous section. In both these formulas the
integrand is the functional exp{i X action}, and the integration is carried
over the product of Liouville measures over the phase space. The
additional functional

exp{ 5@ ") al) +a ¢)a ()] (2:28)

in the formula (2.27) reflects the differences in boundary conditions on
the trajectories over which we integrate: in the case of (1.16) we fix the
value of the same function q(¢) at¢ =1t' and ¢t = ¢"’, whereas in the case
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of (2.27) at t = t' the value of the function a(¢) is fixed, and t = ¢ it is
the value of the function a*(z). We emphasize that the variables a*(¢'")
and a(t") are independent; we integrate over a(t"'), but a*(¢"') remains
fixed. Analogously, we integrate over the variable a*(¢'), leaving a(¢')
fixed.

In the case of a harmonic oscillator the integral (2.27) is easily
computed, since the integrand is an exponential function of a non-
uniform quadratic form. We shall call such integrals Gaussian in-
tegrals. We shall take advantage of the well-known property of a
Gaussian integral, according to which it is equal to the value of the
integrand, calculated at the extremum point of the power of the
exponential function. The condition for the extremum in our case
coincides with the classical equation of motion

@*—iwa"=0; d+4iea=0; a* (")=d"; a(’)=a, (2.29)

since

tl/
d@ ("ya ")+ S (—a'a—ivaa)dt) =
tl
p

= S (ba (a" — iwa") — da” (d + iva)) dt  (2.30)

&

atda*|, =0;8al,=0.
The equations (2.29) can be solved in a trivial manner:

a(t)y=eiot’~0g; qg*(f)=-elot-t"g" (2.31)
Denoting the corresponding evolution operator by U,, we obtain

U, (@*, a; t” —t")=exp {a"aelot'~}, (2.32)
if f(a*) is an arbitrary function, then

do* da
2mi

Up () [ (@)= S exp {a‘ae~i0} | (a%) ¢ -o"e =f(a’e~0t).

(2.33)



2.3 Generating functional for S-matrix in field theory 35

This formula clearly demonstrates the convenience of using the holo-
morphic representation for a harmonic oscillator. In this representation
the evolution of an arbitrary state is reduced to the substitution of the
argument

a*— a'e—iot, (2.34)

This property is very useful for the field theory, because in this
case the free Hamiltonian is represented by the sum of the Hamil-
tonians of an infinite set of oscillators.

2.3. THE GENERATING FUNCTIONAL FOR THE
S-MATRIX IN FIELD THEORY

The holomorphic representation is introduced in the field theory in
terms of complex amplitudes a*(k) and a(k). The canonical variables
¢(x) and m(x) are expressed in terms of these amplitudes in the
following way:

d°k
V2o '

20 =(£ )" § @ ®ets 4 a@emn

2n

n ()= (o) S (@ (B) e=i#* — o (k) et#¥) /\/%_ Bk, ()
ko= o = (k* + m?)".

Under quantization the amplitudes a*(k) and a(k) acquire the
meaning of creation and annihilation operators, respectively.
The free Hamiltonian H; is expressed in terms of a*, a as follows:

Hy= S o (k) a" (k) a (k) &k (3.2)

and is the sum of the energies of an infinite set of oscillators. The
argument k plays the role of the oscillator index number and w(k) of its
frequency. The complete Hamiltonian H, besides the term H,, contains
the interaction V(a*, a), which is obtained by substitution of the
function ¢(x) in the form (3.1) into [ ¥(¢)d>x. The evolution operator
U(t", t') is determined by the kernel U(a*(k), a(k), t" — t'), which is
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expressed in terms of the path integral
u (a* (k)y a (k)’ 1" — t,) =

I

=Sexp{gd3ka* (k, {")a(k, /”)+S [V (', o)+

)
+ S Pk (—a* (&, )k, ) — ioa’ (k, 1) a (k, 0)] dz} X

* (R, k, * ” * 4
X [[LCLe®D ok, 1y =0 (R); a(k, ) =a).
e (3.3)

From this formula it is easy to pass over to the S-matrix. For this
we point out that for an arbitrary operator 4 with a kernel
A(a*(k), a(k)) the operator

elHot” fo~1iHit’ (3.4)
has the kernel
A (a” (k) e'ot", a(k)e—iot), 3.5)

This is a direct generalization of the formula (2.33) for a harmonic
oscillator, obtained in the previous section. Thus, the kernel of the S-
matrix is obtained as the limit for '’ — o and t' — — of the integral
(3.3), which we shall for convenience rewrite in a symmetrized form as

S(a” (k), a(k)=

— lim Sexp {% S Bk (@ (&, ") a(k, ") + o (k, ') a(k, ') -
tt'”—;)—woo

"

n "S dt[SdSk(QLi(a*(k, Dak, 1)—a(k, 0)ak, 1) —

£

2mi ’

—o k) a (k, 1)a(k, t)) —V (@, q [ L&D da e D
kRt
' (3.6)

where
a*(k, (") =a" (k) exp {io (k) 1"}, 3.7
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a(k, t'y=a(k)exp {— io (k) t'}. (3.8)

We shall apply this formula to calculating the S-matrix for
scattering on an external source 1(x), when

V()= —n(x) o). (3.9
The corresponding functional V(a*, a) has the form
Vi, a={delvk D ®+v - Ha@®] (.10)

where

—_ 1 1 \” —ikx 3
Vi )= (Zﬂ) Sn(x, f)e=te* @3, (3.11)

The functional V(a*, a) depends explicitly on time. Nevertheless,
all the formulas for the evolution operator in this case still remain valid.
The only change is that the evolution operator now depends on both
variables ¢ and ¢’ and not only on the difference between them. The
integrand in (3.6) in our case again takes the form of an exponential
function of a nonuniform quadratic form, and the Gaussian integral is
calculated in the same manner as in the previous section. The con-
ditions for the extremum are the following:

ik, t)+iok)a(k, 1)+ iyt {)=0,
a*(k, 1) — io (k) a" (k, 1) — iv* (k, t)=0,
a*(k, t"y=a' (R) e, a(k, t')=a(k)e-"', (3.12)

The solution of these equations is given by the formulas

t/
a* (k, {)=a" (k) elot — jeiot S e~losy* (k, s) ds, (3.13)
t

t
a(k, t)=a (k)e-iot — je—iot S elosy (k, s) ds. (3.14)

£

Substituting this solution into the exponential function in the
formula (3.6) and passing to the limit, we obtain the following ex-
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pression for the kernel of the S-matrix:
S, (@, a)=-exp { S d*k [a* (k) a (k) +

1 a (k)ei(;)te—i(kx) +a (k) c—iﬁ)fei(kx)

+ — dtSdsxn(x, f) —
19 I—-oo

S s
_(_‘_)‘"‘.;_ S di §ds8d3x8d3y%n(x, X
><_:(y, s)e""(”“y)e“'“’”‘”]}. (3.15)

The expression for the S-matrix becomes more elegant if we pass from
the kernel to the normal symbol, which is equivalent to omitting the first
factor exp{[d’k - a* (k)a(k)}. The remaining factors may be rewritten in
a manifestly relativistic-invariant form. For this we introduce the
solution of the free Klein-Gordon equation

w0=(57) @ Werta@eFo k=a (1)

O @ -+ m2(p0=0 (317)

and the Green function of this equation

1\ ., d3k
D, (x)=—(ﬁ) Se‘k"e el e =

4 . 1

(00 + m?) D, = 8 (x). (3.19)

The first representation for D, follows from the second one upon
integration over k.

The normal symbol of the S-matrix S,(a*,a) in the above
notation is given by the formula

S'n (Cl*, a)=

=exp{i Sn(x)%(x)dx+égn(x)Dc(x-—y)n(y)dxdy }
(3.20)
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We may point out that the proper choice of asymptotic conditions on
the trajectory of integration has led to the appearance of the causal
Green function in the formula for the S-matrix.

Now let us pass to the consideration of the S-matrix in the case of
the general potential V(¢). In this case we evidently cannot calculate
the corresponding path integral exactly, and we shall restrict ourselves
to the construction of a perturbation theory for it. We shall show that in
this case the problem is reduced to the already solved problem
concerning the scattering on an external field. For this purpose we shall
make use of the obvious formula

@ (x) ... 9(xa)=

8 13 .
S T e exp{t Scp(x)n(x) dx}‘ N (3.21)

1
i

From this formula it follows that an arbitrary functional ®(¢) of ¢(x)
can be written in the form

O (p) =0 (-]l— _ﬁ%c')—) exp {i S o (x)n (x) dx } |n=0 . (3.22)

In particular,

exp{—-iSV(cp)dx}=

=exp{———iSV T dx}exp{iSqmdx}'n:O. (3.23)

This formula, of course, is understood in the sense of perturbation
theory.

Thus, in the path integral (3.6), which determines the S-matrix for
a potential of the general form, we can substitute the exp{—i [ V(¢) dx}
in the integrand by the right-hand side of (3.23) and put outside of the
path integral the formal differential operator

exp{—ig % —1.—%) dx}

The remaining path integral coincides precisely with the already
calculated integral for the S-matrix for scattering on an external source.
As a result, we obtain the following final expression for the normal
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symbol of the S-matrix:
S(@, a)=S(q)=
. 1 s . ,
=exp{—~t S 1% TW) dx}exp{t Sn(x)cpo(x) dx +
+elnwbc—pnwara}| - a9

Here we have replaced the pair of arguments a*, a by a single function
@, since they define each other uniquely. Expanding this functional in
a series in @,,

S(po) =

(3.25)
=Z -,;—, S Sp(xr v X)) Po(x1) oo v o (xn) dxy o .. dxy

we obtain the coefficient functions S,(x,,...,x,). In the operator
formalism these functions appear when the S-matrix operator is ex-
panded in a series over the normal products of free fields. For this
reason the functional S(¢,) is sometimes called the generating func-
tional for the coefficient functions of the S-matrix.

We leave it to the reader to verify that the expansion (3.24) in a
perturbation-theory series generates usual Feynman diagrams. The
function D (x — y) plays the role of the propagator, the vertices are
defined by the potential V(¢), and the function ¢, corresponds to the
external lines. Thus, the formula (3.24) automatically takes into
account Wick’s theorem for chronological products.

If in the formula (3.24) we do not assume 7 = 0, then the resulting
functional

S ((Po» 7]) =
. 1 & .
=exp{ —i S 1% (Té_nm) dxexp{z Sn(x) @ (v) dx} X
Xexp{%gn(x) D, (x — g)7 () dx dy} (3.26)
is the normal symbol of the S-matrix for the scattering of interacting

particles in the presence of an external source 7(x). In practice, it is
often more convenient to deal not with the S-matrix (3.24), but with the
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functional
ze=exp{~ 1§V (7550 e} X
Xexp{ £ § n (0D, (x— pm@) dxdy }. 3.27)

which coincides with S(¢,, 1) at ¢, = O and has the meaning of the
transition amplitude from vacuum to vacuum in the presence of an
external source. The coefficient functions G,(x,,...,x,) in the ex-
pansion of this functional in the series in n(x),

Zm =Y 4§ Gt o xdn) (e dn L,

(3.28)

define the so-called Green functions, to which in the operator form-
alism the average values of the chronological products of the Heisen-
berg field operators correspond. The Green functions are necessary, in
particular, for realization of the renormalization program, which will be
discussed in the next chapters and which until now has not yet been
formulated for the S-matrix directly.

The functional Z(n) itself contains more information than S(g,),
since it is defined for arbitrary functions n, whereas S(¢,) is defined
only on the mass shell, that is, its argument ¢, is the solution of the free-
field equation of motion. Knowledge of the functional Z(#) allows the
reconstruction of S(¢,). The corresponding procedure is determined by
the so-called reduction formulas, which are readily deduced from
comparison of the formulas (3.24) and (3.27).

In order to obtain explicit formulas, we introduce the extended
functional S(¢) by replacing ¢, in (3.24) with an arbitrary function of
four variables. Then the coefficient functions extended off the mass
shell are variational derivatives

- N 18 3
Sa(xy, oo, Xu= RTICRRNE  ICS) S (9) . (3.29)

On the other hand, we can replace the argument 7(x) in the functional
Z(n) by f(x), where

1= D, (x — y)n () a. (3.30)
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Then by direct comparison we verify that

S]_—Idxz%(xt){l écp‘(sxl) % 0 S(CP)I -

_1_»
RN

R Z(ﬁ),n=0}=0. (3.31)

Thus, we have a simple procedure for calculating the normal symbol of
the S-matrix. One must calculate the variational derivatives

z| (3.32)

(that is, the Green functions G ,(x,,...,x,)), apply to these functions
the differential operator

1% 1
iom(x) "7 Gn(xn)

n
E(Dxi + m?), (3.33)
then multiply the result by the product
1
= [T ® (x), (3.34)
i

integrate over all x, and sum over n.

An alternative formalism for calculating the S-matrix may be
based directly on its representation in the form of a path integral. The
expression (3.6) is inconvenient for this purpose, since it is not
manifestly relativistic-invariant and it involves a limit process. Let us
transform this expression into a manifestly relativistic form, by in-
tegrating over the momenta m(x, t). It is necessary, however, to take
into account accurately the boundary terms. We point out, first of all,
that the action functional in the formula (3.6) can be rewritten in terms
of the fields ¢(x, t) and n(x, t)

o

S d’x S [% (% 9o — Fprigp) —
P

1 1 1
— =5 00—y — V@], (335

and the integration measure in terms of ¢ and m has the form

H da* (k, t) c‘la (&, t) — II do (x, t) dn (x, t) . (3.36)

2mi

R, t
it t <t<t”
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Here we have used the relationship between the integration variables
a*(k, t), a(k, t) and m(x, t), @(x, t):
Q(x, )=
—(l— %S (a* (R, t)e~i** 4 a (k, {)eit*) 7L (3.37)
—\eon ’ ’ V20’
n(x, )=

= ()" @@ et —atk, new)i AL @,

which has already been introduced at ¢t = 0 in the formulas (3.1).

Let us use in the integral (3.6), together with the variables ¢(x, ¢)
and m(x, t), also the variables ¢,(x, f) and m,(x, t) which are obtained
from the former ones by the shift

o (x, )=qo(x, ) + i (x, 1), (3.38)
n(x, {)=0@(x, ) + m; (x, ?).

Here ¢y(x, t) = @y(x) is constructed according to the formula (3.16) in
terms of the functions a*(k) and a(k) which enter into the boundary
conditions (3.7) and (3.8). Integration by parts transforms the action
(3.5) into the following form in terms of the new variables:

o

+

t’

1 1
S d’x [OOCPOCP — 5 00PoPo — 5 T“P]

t
1 1
+ S dx S dt[— 5 %+ 5(99,9:9, — 9,9,0,9,) —
i

— 5 — V(@) (3.39)

We see, in particular, that in the second term the variables ¢ and m, are
completely separated.

Using (3.37) and the definition (3.16) of the function ¢(x) and the
boundary conditions (3.7), (3.8), we can rewrite the terms outside of

the integrals in (3.39) as follows:
t’l
4

_ S Ph[a B a ) —+ (@ (& () alk )+

+d'(k )a(k, ') — (a(k, ") — a (k) e—iot")? —
— (a" (K, ') —a* (k) e™t')?]. (3.40)

. 1 1
i S d’x [6ququ — 5 00PPo — 5 T“P]
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At this point we shall stop transforming the integrand in (3.6) and
pass over to the discussion of the limit process t'' — «, ' = —o_ In the

o

integral f dt f d*x m we can pass to the limit, if m(x, ¢)
.

decreases at large ¢, so that

1= Snf (x, 1) dx (3.41)

is an integrable function of # as | 1| — . In the following we shall call
functions analogous to m,(x, t) rapidly decreasing. The functions

m(x, t) for which f I(t) dt = «~ do not contribute to the S-matrix, if

we stick to the convention that exp{i=} = 0.
The boundary conditions (3.7), (3.8) define the asymptotic be-
havior of the variables a*(k, t) ast — « and a(k, t) as t — —<°:

a* (ks t)=a* (k) eia)t + (IT' out (k’ t)’ t—> o, (342)
a(k, y=a(k)e "' +a  (k 1), t—>—o0,

where a¥ ..(k, t) and a, ;(k, t) are rapidly decreasing functions at
t — © and t — —, respectively.
From (3.42) it follows that the differences

Ooa’ (R, t) —iwa’ (R, ) and Joa (R, {) + ioa(k, {) (3.43)

decrease rapidly as ¢t — + and t = —, respectively. Then, as is seen
from (3.37), the difference m — do@ = m, will decrease rapidly as
lt] = « only if

0oa (k, 1)+ io (k) a(k, t)=aqy (R, t), (3.44)
0,a" (k, t)—io(k)a"(k, t)=a](k, 1),

where a,(k, t) and a¥(k, t) derease rapidly as t = « and t — —.
The relation (3.44) together with (3.41) means that the integration
variables o(x, t) for | t| — % have asymptotic forms

X, =g, (x, )+ , (%, 8), t—>Foo, (3.45)

out out
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where the ¢ ;,(x, ) decrease rapidly as t = —, the ¢, ,,(x, t) decrease
rapidly as ¢t — «, and the ¢, i,,gx, t) are solutions of the free field
equation of motion o

0@, i1n + M9y 1, =0, (3.46)
ouvt out
given by the formulas
q)()’ in (x) =
out
= (L ’/’S a; (k) et** - a, (k) e~ik* Lk (347
(2n) (cl;&t ) out ) ),%,m'\/%' (3.47)
where
a,k=a(k), d, (k)=a" (k). (3.48)

No conditions are imposed on the functions a,(k) and a¥*(k).

If the integration variables behave asymptotically as described
above, then the two last terms on the r.h.s. of (3.40) disappear in the
limit "’ — —<. Indeed, we have, for example,

S d’k (a" (k, I') — a" (k) ") = S dk[(a}, (k) —a* (k)2 €2 +
+2(a}, (k) — a" (R)) ea, (k, () +ai(k, )]  (3.49)

The last two terms here vanish as ¢’ — —< owing to the rapid decrease
of a,(k, t), and the first one vanishes, according to the Riemann-
Lebesgue lemma, owing to the oscillations of exp{2iwt'}.

Let us now collect the contributions of the nonvanishing terms into
the S-matrix. Note that the second term in (3.40) cancels out with the
boundary terms of (3.6). As a result, we obtain for the kernel of the S-
matrix the following expression:

s@, =exp{ o @maty er}{esp{i far[— Fut+
+30,00,0,— =0 — V(o) |} [[22EE,  350)

2n
X

where we have passed over to the relativistic notation x = (x, t). The
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variables ¢,(x) and m,(x) are related to ¢(x) and m(x) by the formulas
(3.38).

In the formula (3.50) the variables m, and ¢ are completely
separated, and we can integrate explicitly over m. The boundary
conditions imposed on m, do not depend on a*(k) and a(k); therefore,

the integral
N“=Sexp{—iS%n%dx}Hd“21—:ﬁ") (3.51)
X

represents just a normalizing constant.

The first factor in (3.50) may be dropped when passing from the
kernel to the normal symbol of the S-matrix. As a result, the following
explicitly relativistic expression is obtained for the normal symbol:

S(pe)=N"" S exp { i S dx[% 0,%,0,9, —
— 5 mg} — V(9] } [Tdom, @52

where the integration runs over all fields ¢(x), which behave asymp-
totically in accordance with the formulas (3.45) to (3.48),

@1 (X) = @ (x) — @ (). (3.53)

From comparison of (3.45) and (3.16) we see that ¢, has the following
asymptotic behavior:

o =(=)" o @ e

a3k
oo Voe T Pen (), 1= o,

(3.54)

&%k +o (x), t—> o0
Bo=0 V2m 2, out ? ’

@ (x) = (-—'-)% S b (k) e~ ik

25

where the ¢, ;, (x) decrease rapidly as t — +. We shall say that

out
0,(x) satisfies the Feynman radiation condition. In the alternative
formulation ¢,(x) has no incoming wave as ¢ — —< and no outgoing
wave as t — o, The incoming and outgoing waves of the variable
o(x, t) are completely defined by the solution ¢@y(x).
When acting on the functions ¢,(x) which satisfy the radiation
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condition, the Klein—-Gordon operator (J + m? is symmetric:

Jo. @ +m) gl ax =[O +m) @] 9] () dx=
=— {0909 — oo dx. (355

Indeed, when the action of the operator (I is transferred to ¢} from ¢,,
then the terms outside of the integral, which appear when integration by
parts is performed, take the form

[ avo 00| =

=i S Bk [b* (k)b (— k) et — b (k) b (— k) e=2ot] .. .,
(3.56)

where .... stands for the terms containing ¢, ;,. The integrals (3.56)

out

vanish as t"" — «, ' = — for the reasons which were described after
(3.49). Thus, the quadratic form in (3.52) is defined uniquely as the
quadratic form of the Klein—-Gordon operator in the space of the
functions ¢,(x) which satisfy the radiation condition.

The action of the operator [ + m? transforms the functions which
satisfy the radiation condition into rapidly decreasing functions, and
this action is reversible. The equation

(O+m)e=n, (3.57)

where ¢ satisfies the radiation condition, and n decreases rapidly, has a
unique solution

9()={ De(x— ) (v) dy, (3:58)

the function D (x) has been introduced previously in (3.18).
The formula (3.52) may be rewritten in a more explicit form:

S(ge)=N"" S exp{iSQ(x)dx}IId(p(x), (3.59)

P>Pjp
out

where it must be understood that the quadratic form in the action
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[ & (x) dx is regularized so that

| Gu90,.0 — m?q?) ax=
— (0. @ — )0, 0 — 90 —m2 (@ — @) dr.  (3.60)

The left-hand side can be formally transformed into the right-hand one
if one integrates by parts, forgetting about the terms outside of the
integral.

The formula (3.59) may be taken as the starting point for the
calculation of the S-matrix according to a scheme somewhat different
from the above-described Feynman perturbation theory. This scheme
is based on the formal application of the stationary-phase method to the
integral (3.59) and is called the loop expansion. This method will not be
discussed herein, and we shall confine ourselves to the Feynman
perturbation theory.

Using (3.59), we can readily write down also the expression for
the generating functional of the Green functions in terms of the path
integral. Since Z(n) is the transition amplitude from vacuum to vacuum
in the presence of a source 7(x), we have

zm=n"{exp{i (W +n0owld} o), (61

where integration is performed over the fields ¢(x) which satisfy the
radiation condition.

The obtained formulas (3.59) and (3.61) are appealing in that they
are compact and clear. For example, the representation of Z(7) in the
form of an integral allows one to use simple formulas of calculus:
integration by parts, changing of the order of integration, substitution of
variables, calculation by the stationary-phase method. Unfortunately,
as has already been mentioned above, there does not exist at present a
definition of this integral in internal terms, which would make all these
formal transformations rigorous. Nevertheless, in the framework of
perturbation theory a rigorous meaning may be attributed to the
formula (3.61) by making use of (3.27), which expresses Z(n) in terms
of variational derivatives.

A rigorous proof based on this formula may be given in the
framework of perturbation theory for all the abovementioned oper-
ations for the integral (3.61). This will be done in Section 2.5.
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2.4. THE PATH INTEGRAL OVER FERMI FIELDS

The technique described in the previous sections can be applied
practically without any changes to the case of several interacting scalar
fields, and also to other Bose fields, including vector fields, which will
be discussed in detail in the next chapter. In the present section we shall
show that for Fermi fields it is possible to construct such an integration
procedure, and that the corresponding dynamic formulas (the evolution
operator, the S-matrix) will look practically the same as in the case of
Bose fields.

Let us start with a Fermi system having one degree of freedom.
The space of states of such a system is two-dimensional. In this space
two operators a* and @ act which are complex conjugates of each other
and satisfy commutation rules

aataa'=1, (a)’=0; a>=0. 4.1)

These operators may be represented by 2 X 2 matrices
(0 1Y\, (00
@=(4 0)s a=(1 o) (42)

The formalism of path integration is based on another representation of
the operators a*, a, which is a particular analog of the holomorphic
representation. Let us consider two anticommuting variables a* and a

a'ataa”=0; (a)P=0; a>=0. 4.3)

Such operators are called the generators of the Grassman algebra. The
common element of this algebra (a function of the generators) is given
by the formula

f(a*, @) =fo + foa + froa” 4 fraa’, 4.4)

where fyo, fo1, fio» i1 are complex numbers. We shall call functions
depending only on a* holomorphic functions:

f (a") =fo+ fia". (4.5)

The set of such functions forms a two-dimensional space, and we shall
use them for representation of the state vectors of our system.
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We shall take the operators a* and a in the form
af(@)=a"f(@); af (@)=—=] @), (4.6)
where differentiation is defined naturally by the formula

(ot Fia)=11. (4.7)

It is easy to verify that the commutation relations (4.1) are indeed
satisfied. Our next task will be to introduce scalar product in the space
of holomorphic functions such that a* and a will be complex conjugates
of each other. We shall do this by means of a convenient definition of
the integral of functions of the form (4.4) over da* da. We shall assume
that da* and da anticommute with each other as well as with a and a*,
and we define the following simple integrals:

{adae =1 [ada=1; fda'=0; [da=0. @8
We may point out that the explicit meaning of the last two formulas
consists in the fact that the integral of a total derivative is equal to zero.
The said rules are sufficient for defining an integral of any function, if

we also stick to the convention that a multiple integral is understood to
be a repeated integral. Then

{7 @, ada"da=u. 49)
The scalar product to be found is given by the formula
(fo F)={ (11 @) @) e~ da’da;  (4.10)
here it is to be understood that
(@) =T+ Ia. (4.11)

Let us check that this scalar product is positive definite. For this
purpose, we shall show that the monomials

Yo=1; YP=a" (4.12)
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are orthonormalized. We have

(o, o) = S e~®ada" da= S (1 —a%a)da*da=1; (4.13)
(o, ¥)={ a'e=ada* da =, (4.14)

(1, b)) = S aa’e=%ada’ da=1. (4.15)

That the operators a*, a are conjugates of each other follows from
the fact that they are given by the matrices (4.2) in the basis ¥, ;.
Indeed,

adPo="v; ah=0;
ap=0;  ap; =P

Let us apply the integration rules formulated above to calculate the

integral of an exponential function whose argument is a nonhomo-
geneous quadratic form:

(4.16)

S exp {a*Aa + a’b + b*a} da” da, 4.17)

where b and b* anticommute between themselves and a*, a.
As follows from (4.9), we can shift the integration variables in the
integral (4.17):

a*—>a"— A" a—>a—A""b, (4.18)

since the coefficient of aa* in the integrand does not change under such
a shift. After this shift the integral (4.17) acquires the form

exp{—b*"A"'b} S exp{a*Aa}da”da =
= — Aexp{—b"A7"b}. (4.19)

Note that the formula (4.19) looks exactly as in the case of
integration over commuting variables, except that the factor is in the
numerator, instead of in the denominator as it would be in the case of
commuting variables.
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We shall now proceed to describe methods of defining operators in

the representation under consideration. An operator of the general form
may be determined as

A=Ky + K@ + Kpia 4 Ky 1a'a. (4.20)

Two functions can be associated with it on the Grassman algebra: the
normal symbol

K(a*, a) = Ko 4 K10a" + Koia + Kna'a, (4.21)
and the kernel
A(d", a)= Ap + Aa" + Apa + Aja'a, (4.22)

where 4,,,, n, m =0, 1, are the matrix elements of the operator 4 in the
base ¥, ¥

A = (bn| A1), (4.23)

It is obvious that
(Af) (@*) = S A(a, o) f (@) e~ do* da; (4.24)
(44) @', @)= 4@, 0) 4, (0", ) e~w'o da* do. (425

In order to write down these formulas, we have had to introduce new
anticommuting variables a*, a. By definition, a*, a anticommute with
a*, a.

The normal symbol K(a*, a) and the kernel 4(a*, a) of the given
operator A are related by the formula

A (a*, a) = e?* K (a*, a). (4.26)

To prove this statement, it is sufficient to compare the coefficients K ,,,
and 4,,, in the formulas (4.21) and (4.22) and verify that

Kow=Aw; Koa=Au; Ko=A4n Ki=A;— Ay (4.27)

All the above formulas are readily generalized to the case of n
degrees of freedom. For this purpose one must use 27 anticommuting
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variables

a, ..., a; a,... a, (4.28)
The space of state vectors consists of analytic functions f(a*) and has
dimension equal to 2", The operators a¥ a;, i = 1,...,n, act according to
the rule

lé]
Ela;

a,f(a*)=( )Lf(a*); af (@) =af (@), (429

where the subscript L signifies that in differentiating with respect to a*
in the function f(a*) we must displace the variable a*to the left before
dropping it.

The operators introduced satisfy the commutation relations

aa,+a,a;=9%,; da,+aa;=0; a,a,+a,a,=0 (4.30)
and are conjugates of each other with respect to the scalar product
(i f) = { (@) R@)e-2ee[[da'da. (43D
Here the operation * is defined by the formula
(Ca’;l ... a’;f)*= C*air ey (4.32)

and the integration is performed as before.
The integral of an arbitrary function f(a*, a) equals

(1@ of[dada=1, .. (4.33)

where f ... . isthe coefficient of the monomial a, - : -a,a%- : -a,
in the expansion of f in the generators. The Gaussian integral

{ exp (04,0, + aip, + bja} [ da; da, (4.34)
i

is calculated by shifting, as in the case of one degree of freedom, and is
equal to

exp {—0:(A7") b4} S exp {a;‘Aikak} H daida,  (4.35)
i
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The remaining integral, in view of (4.33), is equal to det A(—1)".
We may point out that the exponential function in the answer may be
calculated by substituting into the integrand the solution of the
equations

d - * *
(-&a—;)L(aiAikak—}— a;b, + bla))=0; @36

d * * *
(d—%)L(a,.Aik a, + @b, + bla,) =0.

This property is general for Gaussian integrals both over usual com-
muting and over anticommuting variables. We shall frequently use it in
the future. The monomials

Vi =05 a6 (<B< o <E) O (437)

are orthonormalized and constitute a basis in the space of states.

As in the case of one degree of freedom, an arbitrary operator 4
can be expressed by the normal symbol K(a*,a) or by the kernel
A(a*, a). If the operator A is given by the expression

A= Zt z“:< erl...tru,... %y By s Gy (4.38)

* — * *
K@,a=2 Z K‘x---‘rlfx---ftain"‘aiah"'af

rt i< in<i, r t
ll< e <jt (4.39)
and
A(a*, a)=
= A a, ...a,a, ...a 4.40
,'Zt ‘1<;<ir e dp [ e 18 %, i (4.40)
Il< --~<]t
where

Aty = O VALY ). (4.41)
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The kernel and the normal symbol are related to each other by
% Z a‘.‘a. *
Aa', a)=e tIK(a" a). (4.42)

The action of the operator on a function, and the product of operators,
are given by the formulas

(4D @)= A@, o)f@)etee[da'de;  (443)
(A,4,) (@, a) = S A (d", 0) Ay (", a) e~Lo*e H da* do. (4.44)

Comparison of the above formulas with the formulas (2.11), (2.14),
derived in Section 2.2 for Bose systems, reveals that they have the
same form. By following the derivation of the representation for the
kernel of the evolution operator in terms of the path integral, one may
verify that this derivation is based entirely on the two formulas (2.17)
and (2.14). In the case of fermions we have absolutely identical
formulas (4.42) and (4.44). Therefore, the representation for the kernel
of the evolution operator for a Fermi system with the Hamiltonian
h(a*, a, t) can be immediately written down as

U@, a; t", t')=
l * ” ” * 4 ’
=Sexp{32(ak(1 )a, ")+ a, () a, (') +
%

P

+i [% 3 (@ha, — da,) — h(a (), a(o), t)] dt ] da* da,

i & tk
(4.45)

where we assume that
a, (") =da,; a,(t)=a, (4.46)
We emphasize that we are dealing here with an integral over the

infinite-dimensional Grassman algebra with independent generators
a¥@®),at), k=1,...,nforeacht ¢ <t=<1¢".
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Let us pass now to the field theory. A complex spinor field may be
regarded as a system of fermions with an infinite number of degrees of
freedom. In this case the generators of the Grassman algebra are the
anticommuting functions ¥(x), ¥(x) or the functions b(k), bX k),
c(k), cXk), i = 1, 2, which are linearly related to them:

00 = ()" { e, (0 5; () + 550, (&), (0) %,

v 0= ()" | (e ) b, (0 + o550} ) c; () a7,
(4.47)

where u k), v (k) are two pairs of linearly independent solutions of the
Dirac equation

Vukey —m) s R)|, e =

(Vuu — m) 03 (R) e =0 i=1,2. (4.48)
In terms of the generators b, b*, ¢, c* the normal product is defined in
the usual way, that is, in the expressions for arbitrary operators in terms
of the kernel A (b*, c*; b, c) or of the normal symbol K(b*, c*; b, ¢) the
generators b*, c¢* are placed to the left of b, c.

Let us consider a system of Fermi fields interacting with an
external source. As an external source we shall take anticommuting
spinor functions &(x), &(x). The Hamiltonian of such a system has the
form

b= (7 (0) vedwb (#) + mb (£) 0 () + B (2) £ () +

+EW) () dx = {[VE T (b () b, (B)+ () c, (B)) +
+ v} (k, 1) b, + by, (k, 1) + 8} (k, 1) c, (k) + c} (R) O, (k, 1)] &°k.
(4.49)

Here we have used the orthonormality properties of the spinors u; and
v, I = 1, 2, in passing to the momentum representation. Then

v, (k, )=uE(k, 1); 8, (k, 1)=0E(k, 1),

) " (4.50)
E(k, )= (%-) ' S E(x, () et®* dix.



24 Path integral over Fermi fields 57

The S-matrix in the form of a path integral is given by the formula

S(b*, ¢* b, ¢)= lim Sexp{;—Sdsk (b} (k, 1) b, (&, 1) +
> 00
t’ > —oo

+ b} (k, ') b, (R, ) + (b <> ) +

¢

—l—iS [Sd%—(b (&, 1) bi (k, 1) — b; (R, 1) b, (%, 1) +

)
+ b )=k, b,¢, 0]}, @s1)

which is Gaussian and is calculated exactly in the same way as the
corresponding integral (3.6), (3.15) for the scalar field. The expression
for the normal symbol is written down in the explicitly relativistic form

Soom €, 5 57, 0, ¢ ) =exp{ i [E(0) S (x — ) E () dxay +

+i{E@ w0+ WE) dr}, (452)
where
Se(r— )= (55 )+ | e#—ve-tmln-wl (v, () ® v} (&) +
+u, (B) @ 1 (k) Ak =

=— (%) S (Yuky —m +i0)" e Vd'  (4.53)

is the causal Green function of the Dirac equation and

Po (x) = (71:?)% S (b (k) u,; (k) e + v, (R)c, (k) e~ i) ltvmo dk
(4.54)

is the solution of the free Dirac equation

([Yuau - m) Sc (X) =0 (X), (lvuap. - m) 1|>o =0. (4.55)

In order to pass from the first representation for S, to the second
one, the properties of the spinors u; v; are again used. The first
representation makes it obvious in what sense the Green function S, is
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causal:

w) = S (x =t w)dly (4.56)

has no incoming (outgoing) waves as t = — (t — ).

The formula (4.52) can be taken as the basis for the derivation of
the perturbation-theory expansion for the S-matrix of the spinor field,
interacting with itself or with other fields. For this we point out that

1 9

7 (,)g—(x))LeXP{ [ S Ep + bE) dx} ==

I = (x) exp{i S € + 4 dx}' (4.57)

L) exf i { @+ a0)ax )=
=eXP{i S(Exb+fp§) dx}(p(x),

where the definition of the right-hand derivative modifies in a natural
way the definition of the left-hand one. These formulas together with
(4.52) allow one to reduce the path integral for the S-matrix with an
arbitrary interaction of the fields ¢, ¥, ¢ to the integral for the S-matrix
with an external source. The Green functions of the spinor field and the
reduction formulas are obtained by a natural modification of the
formula for the scalar field. We shall conclude our discussion by giving
the expression for the generating functional for the Green functions for
interacting spinor and scalar fields with the Lagrangian

L (x) =1 (x) iv, 0% (x) — m (x) b (x) + % 0,9 (x) 0,9 (x) —
- % m*@® (x) — g () v (x) ¢ (x),  (4.58)

containing the most simple version of interaction; this functional is
given by the expression

s g\ L5 8 @

zmEo=e{ =g\ +(r 1) & X

Xexp{"S(&(x)sc(x——y)§<y)+%n(x)D(x—y)n(w)dxdy}
(4.59)
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and can be written down in the form of the path integral

Z(m,E 8=

T len{if @@t no+terinax} ] dbavao,

¥ (4.60)

where the integration runs over the fields ¥/(x), ¥(x), @(x) which do not
have incoming (outgoing) waves asymptotically as t = —o (¢t = ).

2.5. THE PROPERTIES OF THE PATH INTEGRAL IN
PERTURBATION THEORY

As we already mentioned above, at present there is no definition of the
path integral in internal terms. However, for the purposes of per-
turbation theory in quantum field theory it is sufficient to be able to
work with path integrals of a special type—namely, with Gaussian
integrals. For such integrals it is possible to develop a calculation and
transformation technique, which contains in a compact and clear form
all the combinatorics of the diagram technique of perturbation theory.

Let us obtain these rules in the case of a scalar field, taking for an
example the generating functional for the Green functions. For this
functional we have two equivalent representations: in the form of a path
integral (3.61) and the explicit formula (3.27). We shall use the
formula (3.27) as the definition of the Gaussian path integral. More
precisely, we shall assume that

fexe{i (Lo Kk —powardy+i{onear)x

X(p(x,) cee (P(xn)Hd(p(x)—_—(_l)n 611?xl) T

""—“on?x,,) eXP{ —éSn WK (x—y)n () dxdy}. (5.1)

By definition, integration over d¢ is interchangeable with integration
over dx and with differentiation with respect to external sources 7(x). It
is assumed that an operator K with a kernel K(x — y) has an inverse
K' with a kernel K™'(x — y):

SK(x—z)K_l(z—y) dz=
=K' w—2Ke—pde=d(—1. 2
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We shall consider the kernel K™'(x — y) to be a sufficiently smooth
function. The function D.(x — y) which enters into the generating
functional Z(n) does not, of course, have this property; this leads to the
appearance of ultraviolet divergences when the functional is cal-
culated. These divergences are removed by the renormalization pro-
cedure, which will be discussed in Chapter Four. The first step in this
procedure consists of introducing an intermediate regularization, which
substitutes the function D(x — y) by a smooth function. Hence, the
reasoning which now follows has to do with the regularized per-
turbation theory.

The class of functions ¢(x) over which integration is performed
must provide a unique definition of the operator inverse to K. If
K = [, then such a condition is the already mentioned causality
condition: ¢ behaves asymptotically for | t| — o as the solution of the
free equation which has no incoming waves as t = —< and no outgoing
waves as t — . The operator K™' in this case is integral with the kernel
D, (more precisely, as just mentioned, with its regularization). We
shall call the integrand in this formula (5.1) at n = 0 a Gaussian
functional.

We shall now pass to the discussion of the path integral defined by
the formula (5.1).

First, let us point out that the functional (5.1), which it is natural to
call the Fourier transform of the Gaussian functional

Fo=exp{i (Lo Ke—nowdedsfoc ... ot
(5.3)

is itself a Gaussian functional, since by differentiating exp{/nK 'n
dx dy}, we obtain an expression in which this exponential function is
multiplied by a polynomial.

We shall show that our definition allows one to prove for the
integral (5.1) the validity of the simplest transformations such as
integration by parts and change of variables, and also to introduce the
concept of the functional §-function.

1. Integration by parts. Let us consider the integral
1=S [gfgew{-;-g POKx—v) o) dxdy}]x
X exp{ i S @ ()n (x) dx} [[do- 4
x
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The functional
6 .
B (2) XP {% S P K(x—y) oy dx dy} (5.5)

is Gaussian; therefore the integral (5.4) makes sense and by definition
is equal to

1=i{[{ke—nowayx
xexp{£{ 00 K =)o) dxdy+i{ o (omw ax} | [T do=
=SK(Z—y)W{Zy)‘Z(TI)dy=—i’fl(z)Z(n)~x (5.6)
On the other hand
—in@zm=—{exp{5{ewKE—nowdra}x

X—&E%—)-exp{igq)(x)n(x)dx}ﬂdcp. (5.7)

Comparing (5.4) and (5.6), we see that we have the usual formula for
integration by parts, and the boundary terms are dropped. This result is
generalized in an obvious way to an arbitrary Gaussian integral, since
any such integral may be represented as the derivative of I with respect
to n.

2. Repeated integrals. Since an integral of a Gaussian functional is
itself a Gaussian functional, it is possible to define a repeated integral.
Let us show that

foxp{ i

(K12 :

n
) J= o

1 j=1

=exr>{——% > (K;’)f,ynm;/} (5-8)
i, j=1

4

(we use here abbreviated notation, having in mind that integration is
performed over continuous indices x, y).
Let the equality (5.8) be valid for some n. We shall prove that it is
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valid also for the number n + 1. According to our assumption

1n+1-—SEXP{_‘ Z ("\ +Kzn+1q’n+1)><

( "[)
—5 (0] K@)+
+3 Kn+ln+lan+lan+1 +in +1q°n+1}Hd(p"+l (59)

Integrating over ¢, ,,, we obtain

,n+l=exp{ (Tl,,.H Z tn-H(K l) z)
i, j=
n -1
X( ot — Z ’71+1(K;[);’;K;§‘n+1) X
I, m=1

’

X (= 3 KL () =5 3 i)

i, j=1 i, I=1
(5.10)

1

Taking advantage of
(K1), =(det k)“KH, (5.11)

where K;; stands for the adjoint of the Kjth element of the matrix K,
one can represent the second factor in the power of the exponential
function as

-1

(det K [ (det K, Kt s — b KRG | =
-(detK,,)z"(detKnH . (5.12)

Let us consider the separate terms in the formula (5.10):

—_ xy
Ny Npsgr (det K )xz (det Kn+l Y= Mat1 (Kn-(l-l)n+1 n+1nryz+|’
z‘: T\n+1 (det l)xy K} n+1K:;‘nll‘
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xy — xy v
= "l ntl (det Kn+1) +l lnf 11n+1 (Kn+1 n+1 ]nl (5.13)

In an analogous manner it is possible to show that the coefficients
of n;n; are (K™',,);". As a result, we obtain

I, —exp{—— > (K ,,yn"n,y} (5.14)

i, j=I

which was to be proved. Obviously, the result does not depend on the
order of integration, since a change in the order is just equivalent to the
rearrangement of the columns of the matrix K. Therefore, it is proved
that the repeated integrals exist, and the result does not depend on the
order of integration.

3. Definition of the d-function.

Sexp{i Sn(x)[g C(x—y)m(y)dy—m’(x)]dx}ﬂdni—‘f'—

o(ow—ctc—ne@ay). (515

This equality means that

fr@[fe{i{nm[{cc—nowa—o @]ar}x
XH dn]Hdcp ([ F@exp{i{n[{cec—nowm—
—cp(x)]dx}ﬂdq>ﬂdn Fle™'g),  (5.16)

where F(¢) is a Gaussian functional. [By analogy to the usual
definition of the 8-function, one might expect that in (5.16) there should
be still another constant (that is, independent of ¢') factor det ¢c~'. The
absence of this factor is explained by the fact that our definition of a
functional integral (5.1) includes the normalization condition.]
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The equality (5.16) is verified by direct calculation:

S [SeXP{‘é‘Scp(x)K(x-y)tp(y)dxdy}X
X exp{ i S'ﬂ (x)[S c(x—y)o(y) dy—cp'(x)] dx} qu, Hdﬂ==

=exp{%8cp’ x)c"'Kx—y)c 9 (v) dxdy}. (5.17)

We shall show now that

fexp{i{1Fc @ — o I () ax } ] dn =007 (@) — o’ (),
* (5.18)

f«(o) as a function of x belongs to the same class as ¢(x). The function
/) can be expanded in a formal series of the form

fx@=co(0) + o () +F @),
Fo=elam nowady+

-l-gQSCz(x. Y, o) eRR)dydz+ ... (5.19)

(For simplicity we assume the coefficient of the first power of ¢ to be
equal to 1. This reasoning is trivially generalized to the case of ¢ # 1
with the help of the previous formula.) The equation

co(x) + @ (x) +F (@ —¢ (x)=0 (5.20)

has a unique solution, which may be represented as a formal series in g.
Equation (5.18) means that

([ @esp{ {17, @— o alne dx } X
><det{1 +-§%}H dcp] dy=F(§), (5.21)

where $(¢') is the solution of the equation (5.20); det(1 + 8 7/80p)
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is, by definition,

a1 441} < o s + 3]}

1 8f (x) 8F (1)
dx +78dxdyW—]— }
(5.22)

According to the definition,

([§exef{ ok —nowdray+
+i {1 @ — ¢ I () dx fdet {1 +§—f,}ﬂ do [[ dn =
=[] : fneof (Fp) actaet {1485 (5) )
Xexp{ — 4 (e <x—y)n<y)dxdy}]><
Xexp{—i (¢ —awin@ar}[am (523
The sign — (<) over the exponential function shows that in the
representation of the exponential function as a series all operators 8/6n

must be placed to the right (left) of n. Integrating by parts, we transform
the right-hand side into

{4 fner ke —immararfx
it ()} wa

X exp{ ~i{lww—aw@nEd}[Jan .20

Let us consider the functional
B(¢’, m)=
1 6 <~ {.
——det{l + 67 P }exp{z S (_TEH)“(") dx})(
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Xexp{ =1 {10 ) — co ol () e} =

=eXP{—i Sb—cpfé—(gf(qa’—%)dx}x

xdet {1+ 0 — e fexp { — {19 (—cun(r s},
(5.25)

B(¢', n) satisfies the equation
oBfon () =i[cr() —¢' )+ (i45)]B  (526)
with the initial condition
’ ’ 8 T/
B@, 0=A@)=exp{— | 50T —eoax}x

X det {1 +§fp—(¢'—co)}. L (5.27)

We shall look for the solution of the equation (5.26) in the form

B, =A@ exp{—i{o@)nwds}. (528
Substituting (5.28) into (5.26), we obtain
@ (X) =9 (x) — ¢ (x) — f (¢). (5.29)

Therefore the integral of interest is equal to

4@) e {— £ nw K =@ aray} x

X exp{—i {5 ax} [T an=

—a@)en{t{ewKE—newara}. 530

It remains only for us to prove that A(¢') = 1. The formula (5.27) can
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be rewritten as

A@)=det[exp { — 52 F (@ — 0 } X

{1+ f L _co)}].1=det[ “n—:)" écp,?,"(x) X

XF'@ — {1+ @ —en}] 1. (531)

Let us consider the nth term of the sum in square brackets. It is a
binomial, the first term of which may be represented as

(— ])n &" , (_ l)n & 1 n—1 532
n! (')cp'"'f( ¥)= — 1 axp"“( f (@ )) (3-32)

On the other hand, the (n — 1)th term of the sum in square brackets is
represented by an analogous binomial, the second term of which is
equal to
(_ l)n—-l 6!1,—1
(n—1)1 8¢}

6f n=1, 7
s @) (5.33)

Thus, successive terms in square brackets cancel out, and the whole
expression is equal to one.

4. Change of variables. Let

1={en{f{omKku—vowaa+

+i\e(x)n(x)d dg.
tgcpxnx x}H ! (5.34)

By a change of variables
o=F: (@) [ @)=c@)+¢ ®+F@) (535)
I is reduced to the form

I=Sexp{ Sfx(m)K(x—y)fy(m)dxdy-l-
+i\ @ dc et {1+ 2L T do. (5.36)
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In order to prove this statement, it is sufficient to verify that the Fourier
transforms of (5.34) and of (5§.36) are equal to each other. The Fourier
transform of (5.34) is

exp{égw(x)K(x—y)lp(y)dxdy}. (5.37)

The Fourier transform of (5.36) equals

fo={rmep{—i{n@vwar} =

—exp{ £\ ruk e — )7, dedy faet {1+ &}

X6 —f(g)) H dg’ = exp { ;— S P (x) K (x—y) ¥y (y) dxdy}.
’ (5.38)

The statement is proved.

Our reasoning shows that all those properties of the Feynman
integral which are used in practice in perturbation theory follow directly
from the definition of the quasi-Gaussian integral and can be rigorously
proved independently of the question of the existence of the Feynman-
integral measure. Thus, in the framework of perturbation theory, the
formalism of the path integral is a perfectly rigorous mathematical
method, and results obtained with it do not need additional justification.

All these conclusions apply to the same extent to path integrals
containing Fermi variables. In this case one must bear in mind the
anticommutativity of variational derivatives, and in formulas for chang-
ing variables the corresponding determinant must be written in the
denominator instead of the numerator. This characteristic feature of
Gaussian integrals over Fermi variables has been already discussed
above.



CHAPTER 3

QUANTIZATION OF THE
YANG-MILLS FIELD

3.1. THE LAGRANGIAN OF THE YANG-MILLS FIELD
AND THE SPECIFIC PROPERTIES OF
ITS QUANTIZATION

In the previous chapter we used the path integral to formulate quan-
tization rules for scalar and spinor fields, chosen as examples. At first
sight it seems possible to quantize the Yang—M ills field in an analogous
manner, considering each component of the field to be a scalar field.
This, however, is not so. Gauge invariance introduces certain specific
features into the quantization procedure. The spinor and scalar fields
with which the Yang—Mills field interacts do not have any influence on
these specific features. In the first three following sections we shall
therefore restrict ourselves to the discussion of the Yang—M ills field in a
vacuum.

We recall the notation introduced in the first chapter. Let ) be a
compact group of internal symmetry, 7° (a = 1,...,n) its ortho-
normalized generators in the adjoint representation, t** the corre-
sponding structure constants, and

Sy, = AT* (1.1)

the Yang—M ills field. The gauge transformation is given by the matrix
w(x) with values in the adjoint representation of the group

Sty (%) — S5 () =0 (x) Sy (x) 0" (x) + dpo (¥)o ™' (x). (1.2)

L. D. Faddeev and A. A. Slavnov. Gauge Fields: Introduction to Quantum Theory,
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The gauge-invariant Lagrangian has the form

Z= -g-?g— t{F T uohs (1.3)
where

F oy =0yt — 0,5t + [S4,, S,]. (1.4)

The equations of motion
VuF oy =0,F v — [y, Fuyl=0 (1.5)

are second-order equations with respect to </, and are gauge-invariant:
if .@,(x) is a solution of the equations of motion, then .«/}(x) will also be
a solution for any w(x), where w depends arbitrarily on x. This means
that the equations of motion (1.5) are not independent. And, indeed, it
is not difficult to verify that

VoV F v =0. (1.6)
To prove this, we represent ¥,V as
VWVa=a (VY 4+ V) + 5 (WY, — VY. (17)
We recall that for any matrix % (x) in the adjoint representation
VoV — VuVy) B (%) = [F uvr B (1.8)
Since .7, is antisymmetric with respect to u and v, we get

1
Vvvug-uv=?[g—uw Ful=0. (1.9)

The equality (1.9) is a special case of the second Noether theorem,
which asserts that invariance of the Lagrangian with respect to trans-
formations depending on an arbitrary function leads to the linear
dependence of the equations of motion.

The abovementioned specific feature of the equations of motion
manifests itself in their quantization. Indeed, some of the functions
which parametrize the classical solution depend arbitrarily on time and
do not obey the dynamics. While quantizing we must separate the true
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dynamical variables and the group parameters. We shall deal with this
problem in the next section.

We shall now show why we cannot naively transfer the rules
developed in the previous chapter for the construction of perturbation
theory to the case of the Yang—Mills fields. According to the pre-
scription of Chapter Two, in order to construct the perturbation theory
for a given Lagrangian % one must represent it in the form

L =2+ Lin, (1.10)

where & is a form quadratic in the fields, and Zqt contains higher-
order forms in the fields. The monomials in &1, define the vertices
with three or more legs, and &, defines the propagators corresponding
to internal lines. Namely, the propagator is the kernel of the integral
operator that is inverse to the differential operator which defines the
quadratic form 2.

Up to an inessential divergence, &, for the Yang-Mills La-
grangian has the form (for the normalization </, — g.%/,)

Lo=—+ (3,48 — 3,42) (3,42 — 3, A%) =

= — 5 [0.450,45 — ,A20,45]. (1.11)

In the momentum representation the quadratic form &, is given by the
expression

K, (k) =08 (g, ,&* — k k). (1.12)

This operator has no inverse, and therefore the propagator is not
defined. The reason is that, as has already been pointed out, not all
components of the Yang—Mills field are independent dynamical var-
iables. An analogous difficulty, as is known, is met in quantum
electrodynamics. In this case one uses the Gupta—Bleuler formalism,
which actually reduces to the following: as a photon propagator the
function

&
Dyy () =— 75 (1.13)

is chosen, and it is shown that the S-matrix constructed with its aid is
unitary.
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Generalizing this recipe, one could try to construct the Yang—Mills
theory, using the propagator

aab
Dgg=_ﬁ%. (1.14)

However, as was first shown by Feynman, such a construction of the
perturbation theory is inadmissible. The S-matrix calculated with such
a propagator is not unitary. Therefore it is necessary to revise the
derivation of the perturbation-theory rules proceeding from the causal
description of the classical dynamics for the Yang—Mills field, using for
it the most convenient Hamiltonian formulation of this theory.

3.2. THE HAMILTONIAN FORMULATION OF THE
YANG-MILLS FIELD AND ITS QUANTIZATION

In order to construct a consistent quantization procedure we must first
find the true dynamical variables for the Yang—Mills field and verify
that they change with time according to the laws of Hamiltonian
dynamics. After this, we shall be able, in constructing the evolution
operator, to use the path-integral formalism developed in the previous
chapter. Let us consider in greater detail the structure of the Lagrangian
of the Yang—Mills field. It is convenient to use the Lagrangian in the
first-order formalism:

2= tr{(Ovst,—Oust Felhy, H)—3 Fu)F ), @1

where &/, and ¥, are assumed to be independent variables. Ob-
viously, this Lagrangian, and the equations of motion following from it,
are equivalent to the Lagrangian (1.3).

In the three-dimensional notation (u = 0, k; v =0, ; k, | =
1, 2, 3) we may rewrite the Lagrangian (up to a divergence) in the

form
g=— Lu{sasti— 5@+ + 47}, 22
where

&= w0, 9k=%8”k'¢ﬂ, G =08, — g, &l (2.3)

and we assume that %, is expressed in terms of .&/; through the
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equations of motion, not including time derivatives:
F = 0pHt: — 0154, + g[Hi, ] (2.4)
This same Lagrangian can be written in the form

L= E0AL — h(Ex, Ax)+ A5C%, h=—+{(ER + (G2}
(2.5)

It is clear from the form of the Lagrangian (2.5) that the pairs (E%, 4%)
are canonical variables: A is the Hamiltonian, 4§ is the Lagrangian
multiplier, and C“ is the constraint on the canonical variables. By
introducing Poisson brackets

{E% (%), Al (y)}=0u8""8(x — y), (2.6)
it is easy to verify that
{C*(x), C* ()} =gt C*(x)8(x—y) 2.7)
and that

{§ &£ + (@), ¢ )} =o. 28)

This means that our system presents an example of the so-called
generalized Hamilton dynamics. This concept was introduced by
Dirac. Let us consider it, using as an example a system with n degrees
of freedom. Let p; and g; be canonical variables, running through the
phase space I'”", and let the action have the form

A= S[Z pidi— h(p, ) — ) A% (p, q)] dt;

i=1

a=1...m m<n. (2.9)

Here the variables A°, additional to p and g, are called the
Lagrangian multipliers; and ¢* are the constraints. Such an action
defines a generalized Hamiltonian system if the conditions

{h, 9} =c"®(p, 9) ¢% {o% ¢f}= Zv: ¢ (p, q) ¥ (2.10)
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are fulfilled with certain coefficients ¢ and ¢**”, which in general
depend on p, g. The generalized Hamiltonian system is equivalent to
the usual Hamiltonian system I'* with n — m degrees of freedom. The
phase space I'*2"™™ of the latter system may be realized in the
following manner. Let us consider m subsidiary conditions

x"(ps @) =0, (2.11)

for which the requirements
det|{o%, x*} 150, (2.12)
{x* x#}=0. (2.13)

are satisfied. Then the subspace in ['*"

x*(p, =0, ¢%*(p, 9)=0 (2.14)

is the space I'**"™™ in question. The cannnical variables p*, g* in
™2"~™ may be found as follows. Owing to the condition (2.13), we can
choose the canonical variables in I'*" in such a way that the x* will
coincide with the first m variables of the coordinate type

g=©2 q". (2.15)

Let
p=(p%, p (2.16)

be the corresponding conjugate momenta. In these variables the con-
dition (2.12) takes the form

det

ap®
Ed lae 0, (2.17)
so that the equations of the constraints

9*(p, 9 =0 (2.18)

may be solved for p®. As a result, the subspace p**" ™™ is given by the
equations

X=q*=0; p*=p*(p*, ¢ (2.19)
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and p*, g* are canonical. The Hamiltonian of this system is the
function

K (p*, §)=h(p, )1y, 4o (2.20)

The equivalence of the systems I" and I'* means the following. Let us
consider the equations of motion for the system I':
oh a 0¢° oh AC p”

pi+ 5 lai—=0, Gi————

a4, 3, =0, (2.21)

o*=0.

The solutions of these equations contain arbitrary functions A*(¢).
Subsidiary conditions x*(p, g) = 0 remove this arbitrariness, by
expressing A%(¢) in terms of the canonical variables. As a result, the
equations for the variables p*, g* are the only equations left. These
equations coincide with the Hamiltonian equations for the system

. OW* . . on*
§=%7 P=—g" (2.22)

Indeed, consider the equations (2.19), (2.21) in terms of the
coordinates (2.15), (2.16). The equations ¢* = 0 lead to relationships
which allow one to find A*:

09
+as

0pa =0. (2.23)

Let us now consider some one of the coordinates g* and compare the
equations for it which follow from (2.19), (2.21), and (2.22). They
have the form

v Ok | 40 0% 2.24
.« Oh* __ Oh 0h_ Opa 2.25
9 =" =3 T ope on° (223

respectively. The right-hand sides of these equations coincide if

@ 09q __ 0h ap*
A dpa e I (2.26)
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Using the equation (2.23), this condition may be rewritten as
09 09, Opg
a a a __
2 (G + . ) =0. 2.27)
This equality holds owing to the conditions of constraint ¢, = 0. The
variables p* are treated analogously. Thus, the statement is proved.
A change of choice of the subsidiary conditions is equivalent to a
canonical transformation in the space I'**"™™ and therefore does not
influence the physics of the problem. For quantization of the system I'

the independent variables p*, g* may be used. Then the evolution
operator is given by the path integral

Sexp{iS[p*d*—h(p*, 7] dt} "’(’2;’)" v (228)
t

where the initial and final values of the coordinates g* are fixed. It is
therefore desirable to be able to work directly in terms of the gen-
eralized system I'. It is easy to verify that the path integral

Yexp{i [ — (o, ) =1%o, @]t}
X [T ] deti {@n %31 [] B2 2 (2.29)
t, a t t

coincides with the integral (2.28). Indeed, integrating over A, one can
rewrite the formula (2.29) in the form

fexe{\ip—no, aae}x
X [T 8 @28 (@0 [] deti {oa 231 ][ 2255 (230)
t, a t t

In terms of the variables p¢, q¢%, p*, g* the factor

118 (@0) & (o) det| {ga, %5} | (2.31)

is rewritten as

09q
8 (94) 8 (g,) det [+
1:_[ o o |6p‘3

= [[8@28[pa— pa(", 91 (2.32)
t

As a result, the integral (2.29) is reduced by integration over p, and g,
to (2.28).
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Comparison of the formulas (2.5)(2.8) and (2.9), (2.10) shows
that the Yang—Mills field is indeed a generalized Hamilton system. We
shall now apply the procedure just described to its quantization.

It is clear that in this case the gauge condition must play the role
of the subsidiary condition. As such a condition we shall choose the
relation

0pt, =0. (2.33)
This condition is admissible. Indeed, it is obvious that
{0:4% (x), 0,4 (y)} =0. (2.34)
Further
{C% (x), 0eAl (1)} = 0 [068"" — gt®™* A5 ()]8 (x — 7). (2.35)

The operator M, = A8 — gt® A{(x)d, is reversible within the

framework of perturbation theory. The inverse operator M.' is an

integral operator, the kernel M, '(x, y) of which is defined by the

integral equation

—~lab _ 1 dab
Mc™ (x, y)—;;,x—_m-+
dz A7 (2) -
+g | 4 P T 0M e, )

(2.36)

and may be calculated by iterations as a formal series in g. (Notice that
for large fields A4, the operator M, may have a nonzero eigenvalue, so
that M_' will cease to exist. This problem, however, is beyond the
scope of perturbation theory, and we shall not discuss it here.)

The form of the subsidiary condition (2.33) suggests that in order
to find the coordinates g*, it is convenient to use the orthogonal
expansion .7,

Sty =tk + 4% (2.37)

in longitudinal and transverse components. Here

sth=aB () BW=-1\ Lot ) dy, 239)
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where
Ot = 0. (2.39)

It is clear that the transverse components <7/ (x) play the role of g*. The
momenta which are their conjugates are the transverse components
&I(x). The equation for the constraints is the equation for the
longitudinal part & £(x). If one puts

& (x) = 0@ (x), (2.40)
then the equation for the constraint will be written as
AQG — glste, @1 — glste, &L]=0, (2.41)

where the operator M, already known to us, takes part. This equation
allows us to express the longitudinal component & £ in terms of & [
and /. After substituting the solution into the Hamiltonian 4 (<, & ),
we obtain the Hamiltonian h*(2/”, & 7) in the form of an infinite series
in the constant g. The variables /7, & 7 and the Hamiltonian /4* are the
true Hamiltonian variables for the Yang-Mills field. The field con-
figuration .2/” at fixed time ¢ is given by two functions of x. This means
that the Yang—Mills field has two possible states of polarization.

We can now write down the S-matrix for the Yang-Mills field in
terms of the path integral:

— i 31 1 *b "y b ”
s t!gnwgexp{ Sdk [Z @ (k, ") ab (R, 1)+
> - i=1,2
tl/

+ a? (k, t')ab (&, t’)] +i S dtS By l(_%) <
P
X Ar[&T (x, £) 4T (x, t)— &T (%, 1) ST (%, 1] —

_ren '%T)]}H day (k, 1) da, (k, 1) )

2ni

where

AT (x, )= —o Z Sf”””’(k 1) ul (k) +
=1,2

(2m) la

+ e tha.b (k, 1) u‘ (— k)] VT ,
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ElP (x, )=

> e at @, 0+

L
/2
(27) i=1,2

. Ao d®k
+ e~ikrast (R, t)ul(— k)] ———
V2 aa3)

and ui(k), i = 1, 2, are two polarization vectors, which may be
represented by two arbitrary orthonormalized vectors orthogonal to the
vector k. Here we assume that the asymptotic conditions

ay (k, 1) =2 eVap k), af (k, ') 5= e~ "a} (). (2.44)
are fulfilled.

This formula is not very convenient for the construction of the
diagram technique, since the Hamiltonian 4* is known only in the form
of a series in the constant g, and besides, it generates vertices that are
nonlocal with respect to the space coordinates. Of course, this is only a
technical difficulty, but it strongly impedes practical calculations, in
particular the construction of a renormalization procedure. This de-
ficiency vanishes if we use the representation for the S-matrix in the
form of an integral over all functions </ (k, t), &, (k, t):

"
P v i=1,2

S= lim Sexp{ Sd%[ Z ab (R, t")al (R, t")+
o

tap (k, ) ab (&, t’)]—l—i | ar{ e x

g

X (=) tr[&1(x, 1)5d, (2, ) — &, (x, 1)y (x, 1) —
— &, )= (x, )+ 294018 — glots, HD]}X
X [ 8 @ust:) det Mc (][] dst, d&, dsty. (2.45)
x, t x, t

Here the boundary terms a*(k, ¢t'’), a,(k, t) are defined by the same
formulas as before, that is, in terms of the transverse fields .«//. We can
now integrate over the momenta & ,, taking into account the boundary
conditions, as we did in Chapter Two in the case of a scalar field. As a
result, we obtain for the normal symbol of the S-matrix the expression



80 Quantization of Yang-Mills field 3.2

S=N""! S exp{iS dx[-é—trg'uvg'uv]}x

X [T & @esta) [ det Mc[s#1]] sty
- ‘ T (2.46)

where integration is performed over all fields .2/ (x), the asymptotic
behavior of their three-dimensional parts

ST ()5 1 00> ] o (%);
in

Ar,b — 1 S & (B) e
S TG &, V[, BT
—ikx4i ; d3k
+a?y, (B) pakiot U (k)] Nornl
0

out

a?’ n(R)=al(k), ap

(R)y=av k), i=1,2 (2.47)

being fixed, and the definition of the quadratic form of the action being
correspondingly supplemented. In the formula (2.46), as in the case of
the scalar field, the Feynman functional exp(i X action) is integrated.
However, integration is not performed over all fields. The integration
measure contains explicitly the -function of the gauge condition. This
is a manifestation of the relativity principle, according to which it is
necessary to integrate not over all fields, but only over classes of gauge-
equivalent fields; the -function selects one representative from each
class, and the determinant provides the correct normalization of the
integration measure. The asymptotic conditions are also in accordance
with the choice of the gauge condition.

Expansion of the integral (2.46) in a perturbation-theory series
gives rise to the diagram technique. The propagator is defined by the
Gaussian integral

1) ="\ exp{i { axte [ 0u5t, — 052 — L 7,8,] I
X H 8 (0pSty) dost,, (2.48)

with the Feynman boundary conditions for .«/]. This integral is equal to
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{4 {0 Dic—p B arar}, @249

where Dy, is the propagator sought:

c 1 —ikx [ «m kk A —
Dmt(x)‘—:—wge ¢ (5 F— Iklzl)(kz—l—lO) "k,
Do (x) = Dom (x) = 0;

c 1 ;
Dqo (X) = — W S e—ikx [—le dk. (2.50)

For a proof we shall use the integral representation of the d-function
(2.5.18). Then I(J) is given by the Gaussian integral

1) =N (exp{e§ ax[— 1 (0uah — 0,20 +
+ oA+ 1 0u A} [] a4, an, 251)

X

for the calculation of which it is necessary to find the extremum of the
exponent. The equations

Ay (0yAE — 8:AL) + T + 0eAf =0,

(2.52)
3y (8,45 — 30AL) + 16 =0; 0,4k =0
are rewritten as
0 Af, + (36" + 300, Ab) + Tk =0,
AA—T=0 8,4,=0 (2.53)

and have unique solutions under the above-formulated boundary con-
ditions. It may be assumed also that the source J satisfies the
transversality condition

Al =0. (2.54)
As a result, the solution is given by the formula

Ak )= Div (x— 1) 14 () dy, (255)

where Dy, (x) is the Coulomb propagator just introduced.
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The explicit expression for D, shows that only three-dimension-
ally transverse components ./, propagate in time, in agreement with
our boundary conditions.

A defect of the diagram technique in the Coulomb gauge is the lack
of explicit relativistic invariance. In the next section we shall show that
in the integral (2.46) defining the S-matrix, one can pass to the
manifestly covariant gauge.

To conclude this section we shall give a description of the
alternative Hamiltonian formulation of the Yang—Mills theory, using
the gauge condition 4, = 0. This gauge is an improvement on the
Coulomb one in that it is also admissible beyond the scope of
perturbation theory. Let us show that in each class of gauge-equivalent
fields there exists a field satisfying the condition

Sy=0. (2.56)
For this we point out that the equation
%mm0=—mm0%MJ) (2.57)
allows a solution of the form
t
mﬂnt%=7kxp{—-g‘#ﬂx,9ds}, (2.58)
where the symbol 7 signifies that the exponential is to be ordered in
time. From the equation (2.57) it follows that
X = .58y '+ 00005 " (2.59)
satisfies the condition
40" =0. (2.60)

In addition to the matrix wy(x), an analogous property is possessed
by the matrices w(x) of the form

o (x) = o (%) 0 (1), (2.61)

where w(x) is an arbitrary matrix from Q, depending only on space
coordinates. Thus, the Hamilton gauge does not completely abolish



3.2 Hamiltonian formulation of Yang-Mills field 83

gauge arbitrariness in the definition of the Yang—Mills field, but reduces
the gauge group to the group of matrices w(x).

We shall now show that the equations of motion in the gauge
o/, = 0 are actually Hamiltonian. For this it is convenient to use the
equations of motion, formulated as first-order equations, following from
the Lagrangian (2.1):

0yS4y, — 0,4, + g [.9¢u, s, — F =0, (2.62)
0uF uy — gl by, F,]=0.

Consider these equations in the three-dimensional formulation. In
the notation u = (0, k), v = (0, [), etc., the 10 equations (2.62) are
rewritten as

0F oo =0,F 1. — g1, F1sl,

00ty =F oy
Fip=0p4: — 0,5 + g[S, ),
E (x) = 0pF 0 — g[S, For]=0. (2.63)

Eliminating the variables %, with the help of the equations of motion,
we see that the system of equations (2.63) has an explicitly Hamil-
tonian form

8
ES(x, f)=— 1 a 2.64
WEL(x )= — ey ={H. Ei(e, 0}, (269
a oH a
| L —
Ak, )=y =, Ak, 0},
H={hd%,

where the above-introduced notation for E,, 4, and the Poisson bracket
is used. The last equation of (2.63)

@ (x, )=0 (2.65)

represents an equation of constraint. As we have already seen, the
Poisson bracket {H, & (x, t)} vanishes,

(H, @ (x, )} = 0% (¢, {) =0, (2.66)

so that & (x, t) generates an infinite set of integrals of motion.
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We shall show that & (x) are generators of infinitesimal gauge
transformations, remaining after the imposition of the gauge condition
o, = 0. To do this, we associate with an arbitrary matrix a(x) in the
adjoint representation Q(x) the quantity

c=—rtr{{emaman}. (2.67)
The commutation relations (2.7) in this notation are rewritten as
{C (w), C (B)} = gC ([a, B]). (2.68)

This shows that C(a) defines the Lie-algebra representation of the
group of gauge transformations, consisting of matrices a(x). The action
of this representation on the variables .«/(x) and & (x) is given by the
formula

05t ={C (a), S (x)} =0,0(x) — g [ (x), a(x)],
08, =1{C(a), & (x)} = — g[&k(x), a(x)]. (2.69)

Thus, indeed, the C(a) are generators of gauge transformations,
remaining in the Hamilton gauge.

In accordance with the relativity principle the observables
O(+,, & ,) are gauge-invariant and therefore must commute with
C(a). This condition is a system of first-order differential equations, for
which the relation (2.68) plays the role of the integrability condition
and expresses one of the six functions .«/,, & ,, upon which O depends,
in terms of all the others. Together with the conditions of constraint
(2.65), this reduces the number of independent functions to four, in
agreement with the calculated number of degrees of freedom in the
Coulomb gauge.

Let us see how this classical picture is transferred to the quantum
case. In the operator formulation the Hamiltonian, the constraint C,
and the observables O become operators, which satisfy the relations

1€ (@), C®)]=gC ([a B),
[H, C(0)]=0; [0, C(x)]=0. (2.70)

We cannot directly equate the operator C to zero, although the
formulas (2.70) show that there exists a subspace, formed by the



3.2 Hamiltonian formulation of Yang-Mills field 85
vectors Y, satisfying the equation
Cp =0, (2.71)

and that this subspace is invariant with respect to the operators
corresponding to the observables. The condition (2.71) replaces the
classical equation C = 0, and the constructed subspace is the true
space of states of our physical system.

For a description of the dynamics it is not necessary to work in the
physical subspace. It is simpler to consider the operator exp{—iHt} in
the whole space and to impose the condition (2.71) only on the states
between which the matrix elements are calculated. Since H and C
commute, such a procedure is consistent. Passing to the S-matrix, note
that the condition (2.71) is simplified for asymptotic states. It may be
shown that

ltllxm etitC (a) e~ it = C, (a) + O (1), (2.72)
where
Cy(o)=——= S tr 0,8, (%, ) a (x) d’x (2.73)

is a generator of linearized gauge transformations:
0&,=0; 05¢,=0,0(x), (2.74)

and H, is the free operator for the energy:
Hy=— g tr S (&% + Oty — 015t d’x. (2.75)
Indeed, the difference between C(a) and C(a), having the form
Ci(0)=tr S (&, SL4] 0 dix (2.76)

is quadratic in the fields ./ and & , and therefore the coefficient
functions of the operator exp{—iHyt} C,(a) exp{iH,t} decrease as
l¢] = . The operator C, commutes with H; and the S-matrix. This is
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shown by the following formal computation:
SCy=lim etHet"g=iH (¢"~t)g=tHt' Cy =

= lim eiHt"e=iH (t"=t) Ce—iHt =

t” > 400
t’ >~
= lim eiHot”Ce-iH(t”—-t')e—iHnt'=.
t” > 00
t’'>—o0
= lim CpetHot"e~iH ¢"~tVg~itt' = C,S. (2.77)
tll__)m
t'>—

The state vectors Y(a?), satisfying the asymptotic condition

are given by the formula
v =ep{ Tt ®a®aee}ien @)

where a* and a7 stand for the components a(k) parallel and orthogonal
to the vector k, respectively. As is seen, the vectors Y(a*) actually
depend only on two polarizations. According to the proof, presented
above, this subspace is invariant for the S-matrix.

In terms of the path integral the reasoning given above is re-
formulated in the following manner. The S-matrix in the whole space is
defined by the path integral

S= t lim S exp {S d3k % (o} (&, 1) (&, ) +
II__)m
t/'—>—o0

+ap (k, 1)a} (k, )]+

t

+i S dt S d"‘x( — %) te[& (%, £) oy (%, ) — &, (x, £) 4 (x, £)—

t”

— & (x, ) — D (x, t)]} [[dstia&,.  (2.80)
x,t

Integrating over & , we obtain

S= S ex;{igdx[——‘}(si%—-??)]}ﬂdmk, (2.81)
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where, in contrast with the analogous formula in the Coulomb gauge,
boundary conditions are imposed on all the three components of .27,.

The action in the exponential may be reduced to a relativistic-
invariant form by introducing formal integration over .«/,. Then we
obtain

— S exp{igdx[%—trg'“vg'w]}]__]:é(.%o) dst,. (2.82)

This integral also allows interpretation in the spirit of the relativity
principle. It is an integral over the classes of gauge-invariant fields
under another gauge condition, defining the choice of representatives.
The integration measure is simpler than in the Coulomb case and does
not contain a determinant.

The propagator for the diagram technique has the form

Din=— (2;)4 Se—ikx;fg- (81 + (28— k1) (B2 - i0) '] .
(2.83)
For its calculation it is necessary to solve the equations
0y 0yt — 0psty) + T =0, S4,=0, (2.84)
which under our boundary conditions have the solution
stv= s+ (Dl (x— 1) 919 ay. (285)

This formula shows that, as in the Coulomb case, only the three-
dimensionally transverse components of A7 propagate in time.

3.3 COVARIANT QUANTIZATION RULES AND THE
FEYNMAN DIAGRAM TECHNIQUE

As was already pointed out, the expression for the S-matrix obtained in
the previous section is not manifestly covariant. This is inconvenient
for performing calculations within the framework of perturbation theory
especially for renormalization procedures. The path-integral method
allows us to get rid of this defect. The relativity principle suggests that
for this it is necessary to pass to a relativisitic-invariant parametrization
of the classes of gauge-equivalent fields, that is, to choose a relativistic-
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invariant gauge. The most simple relativitistic-invariant gauge con-
dition is the Lorentz condition

0,54, =0. (3.1)

We shall show how to pass to the Lorentz gauge starting with the
already known expression for the S-matrix in the Coulomb gauge
(2.46). From a geometrical point of view we must transfer the measure,
defined on the surface &, = 9, <7, = 0, to the surface ®, =0, &/, =0
along the trajectories of the gauge group. Formally this may be
achieved in the following way. We introduce the functional A (4),
proceeding from the condition

Apesh H 8 (0ust) do=1, (3.2)

where integration is performed over the measure H dw(x) and dw is the
invariant measure on the group Q:

d (we®) = d (0’0) = de. (3.3)
The functional A, (/) is obviously gauge-invariant:

AL (%)= AL (s9), (3.4)

which follows directly from the invariance of the integration measure.
Using the relation (3.2), it is possible to rewrite the expression for
the S-matrix (2.46) as

S=nN"" Sexp{ de[; tr@ruﬂ'uv]}ﬂé(akﬂk)x

X [ det Mc (8) AL (5#) [[oGust) dodst.  (3.5)
t x

Now note that the functional I:Idet M (/) coincides with the gauge-

invariant functional A (2/) on the surface ®, = 0,7, = 0, where
A (<7) is introduced analogously to A, ()

Ac(59) S 6 (0542 do = 1. (3.6)

Indeed, if ./, satisfies the condition d,.¢/, = 0, then w = 1 is obviously
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the root of the argument of the §-function (the only one within the
framework of perturbation theory). Therefore in the integral (3.6) it is
sufficient to integrate only in the vicinity of the unit element. For
w(x) = 1 + u(x) we have

Opsti = Du— g5ty (x), Opu (x)]= Mcu (x) (3.7)
and
gmm=gmm. (3.8)
Thus the integral is calculated explicitly, and we obtain that
A () 1y, 0 =0= L1 det Mc (s2). (3.9)

Let us go back to our integral (3.5), in which, as just shown, we
can put

1;[a(akmk)1t'[ det Mc=IxI6(6k&¢k) Ac. (3.10)
We perform a change of variables
Sty A (3.11)

the Jacobian of which is obviously equal to unity.
Owing to the invariance of the action and factors A, A, the
integral (3.5) can be rewritten in the form

S=N"" S exp {i S dx [—é— tr F s } [Te0ust) AL ()X

X

X 6(0p5t8”) Ac(st) dodst.  (3.12)

Substituting .o/* in the integral over dw for &7 " and using the formula
(3.6), we see that the last two factors in the integrand of (3.12) may be
dropped. As a result, we obtain the expression for the S-matrix in the
Lorentz gauge:

S—
— N S exp {i S dx[ 5t o] [] A s#)6 @u5%,) dst.
; (3.13)
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Reasoning entirely analogous to the one which led to (3.9) shows that
on the surface ®, = d,.%7,(x) = 0 the functional A, is equal to

AL, g o= det M, (3.14)

where the operator M, is defined by the formula

Mpa(x)=0a— gd,[s#,, a]=Oa+ W (#£)a. (3.15)

We recall that we have already encountered the determinants
det M. and det M, which appear here in the first chapter, while
formulating the admissibility of the gauge condition.

We have not yet discussed the influence of a change of variables
on the asymptotic conditions in the integral (2.46). Therefore the
formula (3.13) for the S-matrix is as yet somewhat formal. In par-
ticular, our reasoning does not make it clear what meaning is to be
attributed to the determinant of M,. The point is that for a consistent
definition of the operator M, in the whole space of variables x we need
boundary conditions as ¢ — =+, In another manner this problem may
be formulated as follows. For defining the determinant it is natural to
use the formula

det My =cxp{Trin M.} =
=exp{TrinO+Trin(14+07'W(s£)}. (3.16)

Here the symbol Tr stands for the operation of taking the trace,
including also integration over the coordinates.

The first factor is an insignificant constant which only changes the
normalization constant N. The second factor generates an additional
term in the action which has the form

(_])n+l

Trin(1 4+ D"‘W(%))=Z LT (07'w) =

= — & { dr drtr {4, (1) o, (29} 00D (11 — 22) X

X 0D (xo—x)— ... +(— l)"“—gnigdxl v dxy X

X tr {ty, (6) ... Shy, ()} X
X 0D (=) ... O Dln—x)— ...,  (3.17)
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where D(x) is the Green function of the d’ Alembertian operator. This
Green function is not defined uniquely, and the question arises which
boundary conditions must be imposed for its unique definition. In
practice, it is a question of how to get round the pole in the integral

1 e-—-ikx
D=—-(2—n)4S—kz— dk, (3.18)

defining the Green function. An analogous problem arises in defining
the Green function DJ,(x — y) corresponding to the quadratic form in
the Lorentz gauge. The formal answer, obtained by inverting this
quadratic form, is

L 1 —1ik (x—y) v kuky I
Duv(x—-y)= — G e 93 ghv — 7 de (3.19)

In this formula it is also necessary to clarify in which sense one gets
round the poles of the integrand.

For an answer to the question on the boundary conditions it is
necessary to perform a transformation of the integral (2.46) into the
integral (3.13) before passing to the time limit /" — o, ¢ — —, We
recall that in the Coulomb gauge, besides the boundary conditions on
the three-dimensional components of the potential .«Z%, there exists the
condition

04, =0, (3.20)

which is satisfied in the whole interval ¢’ < ¢ < ¢, including ¢t = ¢",
t = t'. The change of variables

Sty A =07 o + 0,00 (3.21)

should not violate this condition.
Hence follows the restriction on w:

ox, t")=1, o(x, t)=1, (3.22)

which provides for the disappearance of the space derivatives d,w.
Note that the time derivative d,w need not necessarily disappear at
t = t' and that t = ¢”, since in the integral (2.46) no conditions are
imposed on .o/, att = ¢' and ¢t = ¢"’. Such a transformation also does not
alter the boundary values of the transverse components of .«/% as
' — —oo_ " — +oo gince in this limit the transformation (3.21) is
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linearized and is reduced to the substitution
S, —> s, — 0,0, (3.23)

where

o =-exp {a}. (3.24)

Thus, the formal definition of the operator M,, given by the formula
(3.15), must be supplemented by the boundary conditions

a(x, t")=ua(x, t')=0. (3.25)

The Green function D, appearing in the expansion of the determinant in
the perturbation-theory series, is the Green function of the d’Alem-
bertian operator with the same boundary conditions. Such a function
has the form

D, (x’ y)=

=_1_S ik e—p SN LRI (S0 — )] - sin [ &1 (9o = t1)] 5,
(@n)? [&[sin (| &[] (7" — 1)] ’

X< Yo ) (3.26)

at x, = y, D,(x, y) is determined by the symmetry condition
D, (x, y) =D (y, x).

With such a definition of the operator M, its determinant is
positive in the framework of perturbation theory, and this justifies its
use in the formula (3.14) instead of | det M, | .

The problem of getting round the poles in the Green function D%,
is solved in an analogous manner. For its definition at finite ¢', " we
must solve the equations

Ody=594 0usty=0, (3.27)
where J , satisfies the compatibility condition
0,7, =0. (3.28)
The boundary conditions for this system are

as(k, t")=a’ (k) elot’, a (k, {')=a,(k)e~io" (3.29)
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=1, 2),
0,4y (%, ) =0 for (=t; t=1".

The boundary conditions for <7, follow from the system (3.27) itself
and have the form

Op#y=0, t=t, t=1". (3.30)
The solution of the system (3.27) has the form

stf ()= st (1) + [ D(x, 9) 9T (5) dy, (3:31)

where

1
A )= Y G | etemiotad (k) ut (k) +
i=1, 2

+e—ikx+imta?* (k) ut (— k):%i—, (3.32)
(0]

and the vectors i(k) are the ones introduced previously in (2.43). The
Green function D(x, y) has the form

D(x, y) =D, (x — )0 (t” — yo) 0 (yo— 1), (3.33)

and as t' — —, " — +_ transforms into the causal Green function
D.(x — y). The remaining components .2/%(x) and .2Z,(x) are given by
the formulas

sty() =\ Dy(x, ) 7o) dy;  stF = Da(x, 1) IF () ay,
(3.34)

where D,(x, y) is the Green function of the d’Alembertian operator
with the boundary conditions

000! lt—t” = aoa lts-t’ ==0. (335)
This function has the form

D2 (x» y) =

1 _p cos [[R](xo—t)]cos [ k]| (yo—¢t")]
—@_n)'ss ey lk(l]smllkl(t” t)J0 @k (3.36)

0 <y
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At xy = y,, Dy(x, y) is defined by the symmetry condition. Combining
the formulas (3.33), (3.36), and (3.26), we obtain the Green function in
the Lorentz gauge for a finite time interval consistent with the Coulomb
boundary conditions.

Let us now try to pass to the limit as ' — o, ' = —<o in the
expressions obtained. A limit for the function D(x, y) exists, and it
coincides with the causal Green function D (x — y). This is in
agreement with the fact that the three-dimensionally transverse com-
ponents of A4/(x) correspond to physical polarizations.

The functions D,(x, y) and D,(x, y) have no limits as ¢ — 4+, ¢’
— —oo_ At the same time the limit of the integral (3.13), defining the .S-
matrix in the Lorentz gauge, must exist, since by construction this
integral is equal to the Coulomb integral (2.46), for which a limit exists.
This means that under expansion of the S-matrix (3.13) in the
perturbation-theory series the total contribution of the functions D, and
D, tends to a definite limit. Formally, the simplest way to calculate this
limit is to regularize the functions D, and D, in the same manner, for
example, by adding an infinitesimal imaginary part to the integration
variable k> As a result of such a regularization, the oscillating
exponentials in the integrands for D, and D, will become either
increasing or decreasing at large | ¢’ , |+, and the limit will exist. It is
most convenient to assume that k? has a negative imaginary part —i0,
since in this case the limits of the functions D, and D, coincide with the
causal function D(x), and for the full Green function in the Lorentz
gauge we obtain the manifestly covariant expression

1 Rk 1
Dﬁv(x)=—-72n—yg(g“v—ﬁ0— e di. (3.37)

At the same time, the Green functions figuring in the expansion of the
determinant det M, in the perturbation-theory series also become
causal, and the determinant itself becomes a complex-valued functional
of .o/,.

We may once more emphasize here that the specific regularization
used herein is not the only possible one. For instance, substituting k> —
k? + i0, we would obtain antichronological Green functions for non-
physical polarizations, and the imaginary part of the determinant would
change sign. The Green function wa, however, would then lose its
manifest covariance.

The rather lengthy reasoning given has led us to the following
answer to the question put above: all circuits of the poles of the Green
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functions may be considered to be Feynman ones, that is, we must
interpret 1/k* as (k? + i0)™'. Thus, the S-matrix in the Lorentz gauge
has the form

S=N"" expy i L’crg'm,g' vadx ¢ X
) eofifsronsi

A >A in
W Bout

t—>Foo

X[ aL(Hd0ust,)dst,  (3.38)

where <7, ;, is the solution of the equations

out

058, =0, d,5,=0, (3.39)

parametrized by the amplitudes a,(k) and a* (k) such that
a,=0, ka,=0 a;=0, ka;=0, (3.40)

the amplitude a,(k) being given in &/, (incoming wave) and a* (k) in
o, (outgoing wave).

An analogous derivation of the formula (3.13) for the S-matrix
could be given, proceeding from the Hamilton gauge </, = 0. The only
difference is that, first, the integral [§(.«/%) dw on the surface <7, = 0 is
independent of <7, so that A, = 1; and second, the substitution
o, — o/, implies that the condition

0 (%, )=0 for (=1t and t=1¢", (3.41)

must be used, so that the total propagator Dﬁw is constructed with the
Green function D,. The final result for the S-matrix obviously co-
incides with the previous one.

The obtained formula (3.38) is not the only possible relativistic-
invariant expression for the S-matrix. Integration over gauge-equivalent
classes may be performed in other ways than by selecting a rep-
resentative from each class with the help of the gauge condition.
Analysis of our passage from the Coulomb gauge to the Lorentz gauge
reveals that in the formula (3.2) it is not necessary to use a functional of
the d-function type as an integrand. Instead, one may take any
functional B(.e7) which is not gauge-invariant, but for which the integral
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A5 (s#) = S[B(.szfl )] H do. (3.42)

converges. As a result, a path integral for the S-matrix appears in which
0(0,,) det M,(</) is replaced by Ap(</,)B(</,). Taking the
functional

exp{— 4 | tr @Oust.p ax ), (3.43)

for B(.«/), we obtain a family of free Green functions DS,

1 ; kuky (1 —a) 1
Dﬁv(x)=_wge—‘kx{guv— uk2+10 } k2+10 ’ (3‘44)

which contains the most widely used special cases: at « = 0 we come
back to the Lorentz gauge, and at @ = 1 we obtain the diagonal Green
function.

We shall give some formal reasoning which realizes this program
as simply as possible. First, let us pass from the Lorentz gauge to the
generalized Lorentz gauge:

Opsty (x) =a(x), (3.45)

where a(x) is an arbitrary matrix, using the same reasoning as when
passing from the Coulomb to the Lorentz gauge. The corresponding
functional A (<7), given by the formula

[Aq () =[] o[ousti —a(wldo,  (3.46)

coincides on the surface
awgﬂu=a(x) (3.47)

with the functional det M, where the operator M is given by the formula
(3.15). Thus the generating functional (3.38) for the S-matrix is
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identically rewritten as

s=n" | ep{i{ Lo 7 a}x
A>An
out

X []8@usty — a(x) det Mdst.  (3.48)

Since the initial functional does not depend on a, we can integrate
it over a(x) with the weight

exp { —i -‘% S @ (x) dx}, (3.49)

which leads only to a change in the normalization constant N. Per-
forming the integration, we obtain the generating functional for the S-
matrix in the form

_ . 1
S=nN"" S exp{ i S tr [gg'uvg'uv_g—a(au.s#u)ﬂdx}x
A>A
out

X [ det M dst. (3.50)

Extending the notion of the gauge condition, we shall call this func-
tional the S-matrix in the a-gauge.

Expansion of this functional in the perturbation-theory series
generates the diagram technique with the Green functions (3.44). In
order to make this reasoning quite rigorous it is necessary, as above, to
deal more carefully with the boundary conditions. We shall not do this
here and shall restrict ourselves to pointing out that all the Green
functions may be chosen to be causal. The equivalence of the S-matrix
in various gauges will be discussed in greater detail in the next chapter,
in connection with the problem of renormalization.

It is possible to introduce gauges of an even more generalized
form, for which the longitudinal part of the Green function of the Yang—
Mills field is an arbitrary function of k2. For this it is sufficient to use as
the functional B(4) an expression of the type exp{—(i/4a)
tr[ £(0)0,4,])* dx), where f(O) is an arbitrary function of the
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d’Alembertian operator. All the reasoning given above for the case of
f=1is applicable without any change to this case. Gauges of this type
will be used further on in the discussion of regularization and re-
normalization.

The expression (3.50) for the S-matrix contains the nonlocal
functional det M and therefore does not look like the familiar integral of
the Feynman functional exp{i X action} over all fields. We may,
however, use for det M the integral representation

det M = S exp {z‘ S < (x) MP (x) dx} [[dacae, @31

where ¢(x) and ¢(x) are anticommuting scalar functions (generators of

the Grassman algebra). The boundary conditions for ¢, ¢ leading to the
previous choice of M have the Feynman form

doy () =0, gg., (k) =0,

di,(R)=0, g, (k)=0,

(3.52)

where d, g, d*, g* are given by usual formulas

1 ikx—iot

a , t J— . S LRX — L dan k
¢ )yfn (2n)'": [e i)ut( )+ sk

e‘“’”"““” a* (B Er——
+ g;:}t( )] e
- 1 .
Ca x, t =_—’—S elkx—iotga (kb

Oy = V[ 80, B

4 g thrHiotga ) &k (3.53)
<l)ut ] '\/2(0

Using this representation, we rewrite the formula (3.50) for S as

s=N"exp{i { tr[L 70700 — o @ust —
— 2 (e — gd, [s#,, <])] dx} [[ dstdede,  (3.59)
where as t — *

'9¢ —)u% in c_)c[n Py C—>Cm Py C'—'Cata. (3.55)
w n
out out out
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At the cost of introducing the fictitious fields ¢, ¢ we have succeeded in
taking the relativity principle into account in such a way that the S-
matrix is represented in the form of an integral of exp{i X action}, where
the action is local and has a nondegenerate quadratic form, and
integration is performed over all fields. This allows us to develop a
perturbation theory for the functional (3.54), as was done in the
previous chapter for the case of a scalar field, proceeding from the
Gaussian integral.

With this aim we introduce the generating functional for the Green
functions

20, & 9=N"{exp{i 2.0+
+ AL+ 8 + ¢l dx ) [[ dot dede=

—enfw (e L

X exp{ — & {1721 DI (¢ — ) 2 9) +
+28° () D" (x— y)E W)l dxdy },  (3.56)

where J4, €%, £° are the sources of the fields 44, ¢, ¢, the & and
g antxcommutmg with each other and with the fields ¢%, ¢®, and

Vst & =rir | Q0.5 — 0,58 [t st]+
+ & ([Sty, AV + geo, [y, cldw;  (3.57)

the derivatives with repect to Z are considered left-handed, and with
respect to & right-handed. In the integral (3.56) all the integration
variables satisfy the Feynman boundary conditions. The expansion of
the functional Z in the perturbation-theory series generates the diagram
technique. We list its elements, using from the beginning the momen-
tum representation.

1. The propagator of the vector particles:

w,a V.o
ﬂ NN

a 84? Pup
— D (p) = — sy (G — S (1 — @) (358)
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2. The self-interaction of vector particles:

7t

q,0,¢
= —igloe[(p — R)p Guv + (B — q)y gvo +(9—P)vguol,  (3.59)
by 5P

=Vp= g2 {tavelcae (gupgvc - guogvp) +

a,w a6
+ tacelvde (gp.vgpo - guogpv) + tagel cve (gupgav - guvgdp)}'
(3.60)
3. The propagator of the fictitious c-particles:
a 1/ __nab__ éab
————————— =DV =— IR (3.61)

4. The interaction vertex of the fictitious c-particles with the Yang-
Mills field:

bk
o> =Vaea=——tap (k=g (3.62)
s
/
14

Each diagram involving these elements defines the contribution to the
Green functions G, (ky,..., k,|pi,..., P,) With n external legs for the
vector particles and m legs for the fictitious c-particles. The con-
tribution of a given diagram enters with the factor

Hag) e o

where V is the number of vertices, / is the number of internal lines, 7 is
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the order of the symmetry group of the diagram, and s is the number of
closed loops of fictitious particles.

The S-matrix is calculated with the Green functions, using the
reduction formulas:

S PIRTN CRTRY A T o

=k kLR L RLO(RL) ... (kL)X
XO(= k) oo 0(— ko)t ..t X (3.64)
’ i Im
XG, ..ouw, _“vm(k' ek Ry kU " |k2 :
2.

’2
ki =0

In this cumbersome formula we have multiplied each external vector
line with a momentum k by k* and the polarization vector u’, = (0, u}),
i =1, 2, and then passed to the mass shell k> = 0, assuming that
ko > 0 for each incoming particle and k;, < O for each outgoing
particle. The fictitious particles have no corresponding external lines
and enter into the S-matrix only by means of closed loops.

3.4. INTERACTION WITH FIELDS OF MATTER

The consideration of matter fields y(x) interacting with the Yang-Mills
field «7,(x) does not give rise to new difficulties in the quantization
problem. The action of the gauge group on the field .«7,(x) is described
by the same formulas as without the matter fields. Therefore, the gauge
condition, imposed only on the field .«Z,(x), fixes the choice of the
representatives in the classes of gauge-equivalent fields .«7,(x), ¥(x).
This means that in the definition of the S-matrix for these fields one
may in the corresponding path integral integrate over the fields i with a
measure already calculated beforehand (for instance, Il de(x) for
a scalar field, I1 dy(x) dy(x) for a spinor field), and as a measure for
the fields ./, take one of the measures calculated in the previous section
for the Yang-Mills field in vacuum. A rigorous derivation must be
based on the Hamiltonian formulation of the dynamics, and only
repeats the reasoning, which already has been presented more than
once.

At the same time the gauge condition can be imposed also on the
matter field ¢. This is convenient, specifically, for the quantization of
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models with spontaneous symmetry breaking. An example of such a
condition will be given below.

We shall start with the example of interacting Yang-Mills and
spinor fields. The Lagrangian

L = g7 1 {F T} + 91,90 — mibp (4.1)
is invariant under the gauge transformation
YOS T O () > Al=050" + oo™ (4.2)
The Hamilton gauge condition
So=0 4.3)
is admissible and leads to the equations of motion in the generalized

Hamiltonian formulation (with a natural modification taking account of
the anticommutativity of the fields ¥, ¢)

Booty = —(h, o), OFw=— ﬂ’— — {h, F o},
Oy = —i —S\p_* ={h v}, oW =ig-=1{h ¥} (4.4)
where V"= Py,
= [dbve 0 — 0w + mbp — S0 (Fh + 71| x. @9)
In addition, among the equations of motion there are the constraints

C® (x) = 0pF 0 — 1°° ALF &, + iyl (T%) 4, (4.6)

differing from (2.63) by the last term, which is constructed in terms of
the matter fields. Note that this term is the O-component of the current

= Pyul (7°) ¥, (4.7)
which is conserved in the absence of interaction. The relations

{c? (), C" ()} =178 (x — y) C° (x),
{n, C*}=0;
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{C% (x) Ak (1)} =804 (x — y) — t*"ALd (x — y),
{C*(x), Y} =T (T (x)8(x — y);
{C*(x), D)} =—T (TP (x)8(x—y), (4.8)

analogous to (2.66), (2.68) and (2.69), show that C%(x) is a generator
of gauge transformations, which remain after the imposition of the
gauge condition &7, = 0. The parameters a“ of this transformation are
independent of x,,.

The fields of matter enter quadratically into C%(x), so that the
constraint is linearized on the solution of the free equations as t — «

Ca (X) |t |--;oo Cg (x): (49)
where
C6 = 0xF o (4.10)

As a result, repeating the reasoning of Section 3.2, we come to the
conclusion that in the quantum case, if the S-matrix is constructed with
the Hamiltonian H in the large space where all the fields 4%, E4, §°, ¥*°
act then it commutes with the operator C§(x):

[s, ¢c§(x)]=0. (4.11)

In other words, in the presence of fields of matter only quanta of these
fields and three-dimensionally transverse quanta of the Yang—Mills
fields are scattered.

Note that these conclusions are based, as before, on the linear-
ization of the constraint C%(x) at large values of time. In the framework
of perturbation theory such a linearization seems quite convincing, and
we assume it to take place. At the same time we cannot exclude that
beyond the scope of perturbation theory linearization does not occur.
The models of quark confinement are based exactly on this cir-
cumstance.

Coming back to our S-matrix, we write it in the form of a path
integral

S= S exp{iSg(x)dx}ﬂb(.%o)d&ﬂdﬂ)dlp (4.12)
A>Ain x
xb—)tbjgtt
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and apply to this integral the transformations already described in
Section 3.3:

1. Integration over .
2. Transfer to the generalized Lorentz gauge

O, =0,%,(x)+a(x)=0
using the formula

8 (sto) dst, — Ay ()8 (0,54, + a) dst,. (4.13)

3. Integration over the auxiliary function a(x) with the Gaussian
weight exp{—(i/4a) tr [a?(x) dx}.

We shall obtain expressions both for the S-matrix and for the
generating functional of the Green functions in the a-gauge, which
differ from the formulas (3.54), (3.56) only by the presence of fields
¥, ¥, in the Lagrangian and in the terms with sources.

Besides the already introduced elements G,,, G, V3, V4, Ve,
the diagram technique contains also a spinor line

m At Pubu (4.14)

m? — p? — i0

>-A = Vigpa=gvuT (to). (4.15)

Due to the already noted special features of integration over Fermi
fields, each fermion cycle gives an additional factor (—1). In the
reduction formulas the spinor legs are multiplied by
(2m)"?uy,k, — m)8(—k,) for the incoming particle and by
(2m) (v k,, — m)uB(k,) for the outgoing particle. For antiparticles
u; must be replaced by v; and 0(k,) by 6(—k,).

The second example to be considered is the model with spon-
taneously broken symmetry. As the gauge group we choose the SU(2)
group and let ¢ be the scalar field in the isospinor representation

/7—._____=S=

and vertex

o=(). o*=(9} ®). (4.16)
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The Lagrangian of the model (1.3.25) is rewritten in the first-order
formalism as

L=ZLyy (Au’ F)+eiV.e+ (qu))"' P, — P, —
—Alete—p??%,  (4.17)

where we have introduced auxiliary vector fields ¢, 0., and
Vup=0,0 + -5 Ait’, (4.18)

¢ are the Pauli matrices.
As in the case of the Yang—Mills field in vacuum, the equations of
motion allow us to exclude a part of the variables:

Fin=0,% —0:%4,+¢g [s4i, Ste]; (4.19)
P = V0. (4.20)

Then the Lagrangian takes the form characteristic of the generalized
Hamilton system

L = F:00A% + 93 009 + 009 90 — h (For, 4, B0, @) +
+ A5 (0uF 8 — go™ ALFG + £ (97 0 — 0¥v°g,)) (4.21)

where A is the Hamiltonian, the explicit form of which we do not write
out.

As is seen, the pairs F§,, A% and ¢,, ¢ play the role of conjugate
canonical variables, 4§ is the Lagrangian multiplier, and

C%= — 0kFS: + ge® AkFGe + % (95 v — 9T 1%,) (4.22)
is the constraint. It is easy to verify that commutation conditions such
as (2.10) are fulfilled, so we can use the general formulas from Section

3.2 for quantization of this model.
As was pointed out in Chapter One, the fields

Al =0; cp=(3). (4.23)

correspond to a stable vacuum configuration. Therefore, before passing
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to the quantization it is convenient to make a shift

q,_ﬂp_(ﬁ). (4.24)

As a result of such a shift, the constraint (4.22) takes the form

4= akFOk + gsa cAleOk + mlBO +
+ 5 g(o’Bo — B* g9 — eabCBbe)), (4.25)

where the following notation is introduced:

.B| BZ ] .
l=l_;/_‘;7__" (p2=“+72='(0'—133), m, = ’\/—’ (426)

and B{ and g, stand for the corresponding canonical momenta.

We see that the constraint contains the term Bj linearly; therefore
it is natural to choose as an additional condition (it is also the gauge
condition)

B%=0. 4.27)
Indeed, the matrix of the Poisson brackets

€, B @y =(m+50(0) 8™ —y)+ ..., 428

where ‘- - indicates terms vanishing at B* = 0, is nondegenerate in
the framework of perturbation theory, that is, at | ga| < m,.

In the gauge B* = 0 the quadratic form of the Hamiltonian 4 and
the linear form of the constraint C take the form

m2 2 a\2
——(F%)*+ = (0,45 — 0,A5)" + 2L (48) + 5 (BEY +
2

+ (6k0)2 2262 my=2\u, (4.29)

C§ = — 0,F&, + miB§- (4.30)

As a free Hamiltonian 4 * defining the spectrum of particles in the
framework of perturbation theory, we must choose an expression which
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is obtained by substituting into 4 the solution of the equation of
constraint C, = 0:

o= (P8 o+ 57 (uF8) + (018 — 0u1)" +
2
'"’ (A + 503 + 5 @G0l + 2202 (43D)

The expression [h¥ d°x is diagonalized by the substitution

3 3
A (x) = 2n)_7ZS (ei*=a’ () e! () +

i=1

+ e—tha*b (k

— (4.32)

3 3

Fom)=m 2y | (e*at 0y 2} (k) —

i=1

— emikea (k)2 (— 1))+ A /S d%, (4.33)

(where e!, = &} and e? = &7 are two arbitrary orthonormalized vectors,
orthogonal to the vector k, and

=T B=Ta o o =N tmi, (430

for the vector field) and by the standard substitution for the scalar field
0. As a result, the free Hamiltonian takes the form

3 S ——
S hyd’x = S d3k (Z altabe, 4 aaao%), Wy = \/k2 + m3.
= (4.35)

As is seen from the given computations, the spectrum consists of three
massive vector particles and one massive scalar particle.

We can now pass to the discussion of the S-matrix. In the
generalized Hamiltonian formulation the expression for the kernel of
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the S-matrix in terms of the path integral can be written as

e )
> -

bl (k, ) al (k, )+ d) (k1) a, (R, )+
+a} (k, ) a, (k1)) +

S— lim Sexp{—gdsk(Z(ab'(k )y a (k, 1) +

Iid

+i S &'« S dt (% (F:A% — F A% + 006 — Go0) —
;
—h (For, Ag, Bo, B, 0y, 0) + ASC“)} [To 8% (mi+ &)

X [] dFox dAy doydo dBydB dAy,  (4.36)
X

@t (k, 1) =a%t (R)eiot”, a? (k, (') =al (R)e—"o  (4.37)
ay (k, 1")=a (k) e''";  a;(k, ') =a,(k)e~tt',  (4.38)

Here the variables a’(k, t), a®* (k, t) are related to A%(x, 1),
F3,(x, t) by formulas like (4.32), (4.33):

Al (x, )=
= ()" S D [0 ) etbeef 8)+ af (et (— k)]
x%, (4.39)
F (%, t)y=
=(s)" S i [a (k, t)et= 5t (k) — ab* (k, £) e~ %<3} (—k)]X
=

X+ A/ dh (4.40)

Let us transform the expression (4.36) to a manifestly relativistic-
invariant form, as we have done for the scalar field in Section 2.3. For
this we must integrate over the variables B, o,, B,, and F, and pass to
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the limit as ¢ — =, ¢’ — —<, The integration over 0, and the relevant
transformations differ in no way from the already considered case of a
scalar field, and so we shall not repeat them. Integration over the
variable B, is performed after the shift

Bi — By — miAg, (4.41)

which separates B, from the other variables. The functions By(x) and
Ay(x) do not take part in the boundary conditions, so that integration
over B, leads only to a change in the normalization factor. As a result of
the shift (4.41), a mass term of the form (m3/2)A4} for the field 4, is
added to the action. Integration over B, removes the d-function from
(4.36).

In order to integrate over Fy,, it is necessary to make a shift

Fo = ak( ) -+ oAl — 0,45 4.42)

Integrating by parts, we verify that in the new variables the quadratic
form of the action, obtained from (4.36) under the already carried out
transformations, takes the form

4

1

P tS dt S d’x H (0,42 — 0,A%) +

— 4 4zt o

+ sy = (Fa0]. @)
Now let us perform a shift of the variable .27,
=430 4+ 42, (4.44)
where .2/” is the solution of the free equation of motion
(O, +m3g,,) #P0 =0 O,y=0g,y— 0,0, (4.45)
generated by the quadratic form (4.43). It may be written as
A0 —

= ( on ) ’ S ? (k) e=tkxuf (k) + a* (k) e**uy (—R)] |,

a3k
X —F= Wornlk (4.46)

=0)|
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where

h=0.¢) i=1% w@=(1 q). @

and the vectors e}, i = 1, 2, are the ones introduced in (4.32). Note that
«/? satisfies the relation

0,54 =0, (4.48)

which must be satisfied by all solutions of the equation (4.45).

By integrating by parts it is possible to completely exclude .«Z*
from the quadratic form of the action (4.43), as a result of which it takes
the form

.
Jatx[(@uz® — 005 ®) (a2 —§ a2 ) — L Feea][ +

1712
+ 2 gy (4.49)

The terms outside of the integral may be expressed through the
variables a’(k), a®*(k), as a result of which the first term in (4.49) will
be written down in a form analogous to (2.3.40):

< S &k { ar* () a? (k) — 5 [at* (k, ") a? (k, 1) +
+ ab* (R, 1)l (k, )] — (a" (k, ') — ab* (k) eio')2 —
— (@} (k, t") —ab (R) e~ ")}, (4.50)

The second term in (4.49) remains finite in the limit ¢’ = — o, " — oo,
provided that

AS (x, t)=
1\ . 3
()" (@t o= g ek, ey 1oL

m, '\/QTI
+ A3V (x, 1), (4.51)
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where 45" is a rapidly decreasing function, as also is F{". The relation
(4.42) is compatible with this decrease and the boundary condition
(4.37), (4.38) if

ar* (k, ) =elotals, (k) +ab*, (&, ),  —>—oo,
a (k, t)y=c=lov'ad (k) +al (& 17), t"—>oc0, (452)

where a’ *(k, t') decreases rapidly as £ — —<, and a},(k, t") as
t"" — . As a result, we see that in the expression (4.36) it is possible to
pass to the limit as #" — «, ¢’ — — if the integration variables behave
asymptotically as the solutions of the free equation (4.45):

Al (%, t)= A, in (%, )+ Al “Rn (x, 1), (4.53)
ou

where A2("), 42("), decrease rapidly as t — — and t — «

M, ind
respectively, and 44 ;, and 4% . are represented in the form

K, in

An, o= (QH)I’S[a, in (k) e=t5u,, (R) +

d3k
Bt (— ——, (4.54
. 3&( ) “u ( )] k=, /2w, ( )
where
a} , (R)=al (k); al*,, (k)= al* (k). (4.55)

No conditions are imposed on the functions a? , (k) and a? *(k).

From (4.54), (4.55), and (4.46) it follows that 42" = 42 — 42
satisfies the Feynman boundary conditions, that is AL does not
contain incoming waves as t — —< and outgoing waves as t — <. On
such functions the quadratic form in (4.49) is uniquely defined as the
quadratic form of the operator

O,y + mig,,, (4.56)
occurring in the equation (4.45).

Further transformations of the expression (4.36) precisely follow
the reasoning of Section 2.3. As a result, we obtain for the normal
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symbol of the S-matrix the final manifestly invariant expression

s(A(O) (0))
— S exp{ SZ(x)dx}II(m1+ 0)’ dA, do, (4.57)

A->Aip

out
G—>0in

out
where
ﬂl
1 Az +
m o2 2 2
—l— 0 00,0 — —l— oAu—l——s—oAu——
gm? 3 gzlng 4

——=0——=—=0"
4m, 32m]

1
— —_(a\;Ag—auAa +g8abcAbAc)2

(4.58)

The asymptotic conditions for the fields o have a form analogous to
(2.3.47):

d®k
frmy V202
(4.59)

’

Ocl:ﬁt ()= (—21?)% S (ao’oi:t () e—ikx—{—a};,o;:t () eikx)

where a¥ (k) = a*(k); a,, (k) = a,(k). The asymptotic conditions
for the fields 4% are given by (4.54), (4.55).
The quadratic form in the action | & (x) dx is defined as

(A= a9 (0 + gomd (4= 49, @60)

where the operator ((J w+mfg#v) is supplied with Feynman boundary
conditions. The generating functional for the Green functions,

20, m={exp{ 1§ (2 0+ 1242+ om) ax }
X[ (m+%0) dstydo  (461)

and the perturbation-theory diagram technique which follows from it,
contain some new features. First, the propagator of the vector field
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(4.51), which can be rewritten as
1 \* kyky
Diy(x—y)={|— Seik(x—y) —
uv ( !7’) o guv m2 X

1
1
Xk2—mf+zo

d'k, (4.62)

has a higher degree of singularity at x ~ y than the Green functions we
have encountered until now. Indeed, its longitudinal part

kuky 1 (4.63)
m% k2 — mf + i0

does not decrease at large &, so that its contribution to the propagator
has a singularity of the power §(x). Second, the integration measure
contains the local factor det M,,- It may be formally written as

det Mo = H (ml -+ % V] (x))3=

= const - exp{ 4 S In (m, 4+ gGQ(x) 3} dx =

— const - exp { 8™ (0) [— P S (g—gm‘—’l‘)- ! dx] } , (4.64)
n=1

V= S dx =8 (0).

In the framework of perturbation theory such an addition to the action
generates new diagrams, the contribution of which is proportional to
powers of §Y(0) (of course, this expression is to be understood in the
sense of a certain volume regularization). The role of these diagrams is
to compensate the singular parts of other diagrams arising in the
perturbation theory. Such singularities arise in the multiplication of
O-type contributions of vector particles to the Green functions.

Both indicated features of the diagram technique for the La-
grangian (4.58) shows that it contains inconvenient singularities.
Therefore it is more convenient to investigate the model under con-
sideration in the Lorentz gauge or in the a-gauge, which can be
introduced in a simple manner, using already familiar methods. The
role of the above-considered gauge (often called unitary) is that it gives
the spectrum of particles and the asymptotic states of the model in a
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manifestly relativistic-invariant manner. In this sense it gives us a
substitute for the Coulomb gauge of the Yang—Mills theory in vacuum.

We shall not again describe the procedure of passing to the
a-gauge, since it does not require any new ideas in this case, because
the field 0,4, does not propagate. The normal symbol of the S-matrix is
given by the path integral

S=N""' S exp { i S (2m+ 220 A)) dx} X
S

o>0in X det M, || dyAd#do,  (4.65)

out

where
| m3 a 1 .
Z(x)=— 7 FuvFuv + —21 Afx + mAsd,B® + 3(?“3 0,B% +

1 2
+ 5 0,00,0 — 202+ 5 Af (00,B°—B0,0—e B’ B%) +

2
&1
4!711

mg

2
TUA3+—%-(G2+BQ)A3—

g’m?

— (P + B, (4.66)
|

+ o (0 + BY) —

and

M= Mu =0 u— go, [, ul. (4.67)

The asymptotic conditions for A5 and o are the same as before. The
fields 0,49, B® and the fictitious particles ¢, ¢?, taking part in the
definition of det M, do not propagate. In the construction of the diagram
technique it is convenient (but not necessary) to use the Feynman
boundary conditions for them. The generating functional for the Green
functions is constructed in a standard way by means of the expression
(4.65) for the S-matrix.

The diagram technique in the generalized a-gauge is somewhat
cumbersome owing to the presence of mixed propagators. In cal-
culations it is more convenient to use the Lorentz gauge a = 0. In this
gauge the diagram technique has the following elements:
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1. A propagator corresponds to the line of a vector particle

K apr [ 8uv — kykyk=?
[ e e N Y 0 [—————k2 “ 10 . (4.68)

2. The propagators of the fictitious particles ¢, ¢ and their interaction
vertices with a vector particle are the same as for the Yang—Mills theory
in vacuum.

3. To lines of scalar particles B® and o there correspond the prop-
agators

a .,k 6 __ _8* (4.69)
* )
k _ 1
K, = (4.70)

4. There exist numerous interaction vertices of the fields .27, % and
o, which are readily written out according to the Lagrangian (4.66).

The reduction formulas have the usual form and we shall describe
them in words. The external legs in the Green functions must be taken
only for vector particles and for particles of the field o. Each leg,
corresponding to a vector field, is multiplied by (k} — m?) and by the
polarization vector u)(k;). Each leg, corresponding to the field o is
multiplied by (p? — m3). Then it is necessary to pass on to the mass
shell k} = m?, pj= m3, assuming k, and p, to be positive for outgoing
particles and negative for incoming particles.

Another version of the diagram technique can be obtained if one
chooses as the functional B in the formula (3.42), which removes
degeneracy, the expression

exp { 2—'0‘ S (0,4% — amB%)* dx } (4.71)

Computations entirely analogous to those which led us to the ex-
pression for the S-matrix in the a-gauge lead to the following result:

S=N"" S exp{i S [EZ (%) + ?la- (0,42 — amlB")Q] dx })(
A-> Ajy
out
G=>0in
out

X [ det My dA, dB do, (4.72)



116 Quantization of Yang—Mills field 34

where the Lagrangian & is given, as before, by the formula (4.66),
and the operator M looks as follows:

Myu=(01 + ami) u — g3, [, ul+ =55 [#, u] +

amg

+—5—ou.  (4.73)

As before, det M, can be represented by an integral over the fields of
fictitious particles:

det My = Sexp{i S o (x) MEe” (x) dx} H dede. (4.74)

The term m,450,B° that is nondiagonal in the fields 4,, B in the
Lagrangian (4. 66) cancels out with an analogous term in the expre551on
fixing the gauge. As a result, mixed propagators A”B" are absent. The
Feynman rules differ from the ones formulated above in the following
points:

1. The propagator corresponding to a vector line is

ap [ Guv — kukve™? kykyk™? (4.75)
e T =t ) ) '
1 1

2. The propagator corresponding to the scalar B-line is

L A (4.76)
p?—mia 4 i0 ’
3. The propagator corresponding to fictitious particles is
e (4.77)
p? — mla + i0

4. There appear additional interaction vertices of fictitious particles
with the fields B* and o. Their explicit forms are easy to derive from the
formulas (4.73) and (4.74).

At a = 0 these rules obviously coincide with the rules formulated
above for the Lorentz gauge.
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At this point we conclude the description of examples of inter-
action of the Yang—Mills field with fields of matter. We hope that the
examples have been sufficiently typical, and that the reader will be able
without difficulty to construct a diagram technique for any arbitrary
model either with or without symmetry breaking.



CHAPTER 4

RENORMALIZATION OF
GAUGE THEORIES

4.1. EXAMPLES OF THE SIMPLEST DIAGRAMS

The diagram technique developed in the previous chapter allows one to
calculate Green functions and probabilities of scattering processes to
the accuracy of any order in g. However, direct application of the rules
formulated above to the calculation of diagrams containing closed
loops leads to a meaningless result—the corresponding integrals di-
verge at large momenta. Attaching meaning to these expressions is the
essence of the renormalization procedure to be studied in the present
chapter.

As the simplest example, we shall consider the second-order
correction to the Green function of a fictitious particle in the Yang—
Mills theory with the gauge group SU(2). This correction is described
by the diagram in Figure 1. The corresponding analytical expression
has the form

g 2 1
BT (1-1)

where in the diagonal a-gauge (a = 1)

i2kyguv S dp (k— p)y
(2m)* (p*+ i0) [(k — p)> +i0] *

3 (k)= — (1.2)

As p —  this integral diverges linearly. In order to attach meaning to
the integral (1.2), we first introduce an intermediate regularization,

L. D. Faddeev and A. A. Slavnov. Gauge Fields: Introduction to Quantum Theory,
ISBN 0-8053-9016-2.

Copyright © 1980 by The Benjamin/Cummings Publishing Company, Advanced Book
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Y

s\l

V4 %-p K

Fig. 1. Second-order correction to the Green function of a fictitious particle.
The dashed line indicates the propagator of the fictitious particle and the wavy
line of the Yang—M ills field.

replacing the function (p? + i0)™' by the regularized expression

1 1 1
0 A0 pP—ATt0
A!

: d\
=_OS (PZ—4 F 0)% ° (1.3)

As A — = the regularized Green function tends to the initial expression
(p? + i0)7". At finite A the integral

2

2iky dp (k — p) 4
Za (6) = T | 4 \ e s B
0

converges. To calculate it, we use the Feynman formula

1
1 2zdz
% =§m' (1-3)

This formula allows us to combine both factors in the denominator of
the integral (1.4) into one:

2

2ik
S (B) = G de S dz22 X

dp (k— p)v
XS [(PP—A+0) z+ (B2E—2pk+ p2 +i0) (1 —2)F° ° (16)

Passing to new variables

p—=>p+k(l—2), (1.7)
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we obtain

A2 1
S (k) =% S di S dz22 X
0

0

dp (kz — p)
XS [p2+k’(l—z)z—\;\,z+i0]3 - (1.8)

The integral

S dp p.f (p?) (1.9)

is equal to zero for reasons of symmetry.

In the remaining integral one can rotate the integration contour
through 90° and introduce a new integration variable p, — ip,. As a
result, the integral over p takes the form

1=—i{ (1.10)

where integration is performed over the four-dimensional Euclidean
space. Calculation of the integral (1.10) gives

in?
= — TR (1.11)
As a result, we obtain the following expression for the function 2 ,(k2):

At 1
k? 222
To USdl Sdz =2z 77" (1.12)

0

S ()= —

The integration over A is performed explicitly. At k> < 0 we obtain
1

252 2 (1 — — A2
2\ (R =+gr S dz-zIn% ()az(lzizz)z 2, (k2<0).

0 (1.13)

As A — <« this expression, as might be expected, diverges log-
arithmically. The renormalization procedure consists in replacing the
integral in (1.13) by an expression obtained by the subtraction from this
integral of one or more leading terms of the expansion in a Taylor series
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(in this case one term is subtracted). Expanding the integrand about the
point k* = %, we obtain

1

2k? l—2)z— A2

INCRHES T6? {Szdzln—————"(%(l_z)z +
0

1
R(l—2)z— A%z BR(—2z)z
+SZdz[ln w(l —2)z— A2 —In % —2)2 ]} (1.14)
0

As A — = the second and third terms tend to a definite limit equal to

AL (1.15)

1672 %

Zp (R =—
The first term has no limit as A — <, and it behaves as

— gt —s) =gz (n 2 +...). (L16)

The separation (1.14) is not the only one possible. Choosing as the
central point of the expansion a point other than %, we would obtain for
2 z(k?) an expression differing from (1.15) by a finite polynomial in k2.
Thus, the general expression for the renormalized Green function
to second order in g2 has the form

l ~ 2 k2
—F¥o (1 +b:— l§n2 In T.)' (1.17)

where b, is an arbitrary constant.

Substitution of the renormalized expression (1.15) for the di-
vergent integral (1.2) is equivalent to the redefinition of the original
Lagrangian. Indeed, let us replace the Lagrangian for the fictitious
particles by the following expression:

tr = tr = —
— —;— co, Ve —> — —Qr— {c Oc — gco, [A,, cl+
+ (2, — 1)c Oc}, (1.18)
where z, is defined by the formula (1.16). Since the last term ~ g%, we

shall attribute it to the interaction Lagrangian. Then in the per-
turbation-theory expansion there will appear, besides the diagram in
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Fig. 2.

Figure 1, a new diagram (Figure 2), where the cross indicates the
vertex responsible for the “counterterm” (z, — 1)e¢Cec.

Obviously the correction to the Green function corresponding to
the sum of the diagrams in Figures 1 and 2 is given by the formula
(1.17) (at b, = 0). This simple example shows that the subtraction of
the leading terms of the expansion in the Taylor series is equivalent to a
change (renormalization) of the original Lagrangian parameters (in this
case of the normalization constant of the fictitious-particle wave
function).

Let us illustrate this observation by one more example. We shall
calculate the third-order correction to the vertex function I‘m/ re-
sponsible for the transition of two fictitious particles into one vector
particle. The diagrams, contributing to I' e, in the third order in g, are
presented in Figure 3.

For simplicity we shall restrict ourselves to the case of zero
momentum transfer g = 0.

The integral

dp (k — p)a (k— p)y kg&ap 1.19
. b :
[,=—ig%"" S @n)* (P2 = 0) [(k — p)? £ i0]% ° (1)

corresponds to the diagram (a). Introducing intermediate regularization
with the formula (1.3) and using the relation

1
1 _S 62 (1 — 2)dz

a?b? — ) laz -+ b (1 —2))*°
)

(1.20)

g g
1Y, )6
/7 \
/ X
/ \
. ,//\/-\,/'\\;__.‘;_ e ) _ | _c_
Vg h+g Vs ,{'+g
a) b)

Fig. 3. Third-order corrections to the vertex function I"M_,,-F.
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we write this integral in the form

| A

. lg.seabck g S
Ia———(ﬁ)q—a dz di ><
0 g
(k— p)a (£ — p)y 62 (1 —2)
x { av =k —aPFF0—az—ax (12D
The change of variables (1.7) gives
1 A?
, i abck
fo= = e e an
6 0
(kz — p)g (k2 — p), 62 (1 — 2)
X S P—mrra—a.—ma 122

The odd powers of p do not give any contribution, for reasons of
symmetry. For the same reasons

( 1 .
S dppupyl (P*) = T &uv S dpp’f (p°). (1.23)
Passing to the Euclidean metric and integrating over p, we obtain
1 _ t'gseabcka
a (2m)*

1 A?

5 in?

>< {OSdZ(S dAz (1 —Z)kaku (£2 (1 —Z)Z—AZ}Z +
A

1
(— im)?2 2 1
+gauSd2 ) z(l—z)gdk {kz(]_z)z__m}}.(l.24)
0 0

Integration over A gives

la= 5 kP, X
1

1
OS kz(l—z)z—Azz - k?(l_z)z}z?(l—-z)dz—l-
1

Y
5o, I U=y <o),
0

k(1 —2)z

(1.25)
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The first term in the formula (1.25) tends to a definite limit as A — =,
and the second one diverges logarithmically. As in the case of the
second-order diagram, the expression obtained by subtraction of the
first term of the expansion in the Taylor series from the second integral
tends to a definite limit. As A — «, I, can be expressed as

g%k g€k A?
=gz~ (b1 —)+ e =, (1.26)

where b, is a finite constant, depending on the choice of the point x.
The diagram b is calculated in an entirely analogous manner. The
corresponding integral has the form

Ib = — igssabc X

S dp (k—plg kg {2pu86p0 — PoBup — PpLuct 8ac8op
X') Gy [(k — p)> + i0] [p® + i0)? )

(1.27)

Repeating the computations given above, we obtain as A — «

ge abck ‘,2 3g36abcku A2
s (b —31n- St n=. (128)

Subtracting the terms proportional to ln[AZ/( —x)] from the sum I, + I,
we obtain the expression for the renormalized vertex function in the
form

gseabck . 42
IR="ger* (b, — In =), (1.29)

where b, is an arbitrary constant. The subtraction performed is
equivalent to the insertion in the Lagrangian of the counterterm

+ {g (& — 1) cd, [, cl}, (1.30)
where
35— 1=— 16:12 (1n — +5.). (1.31)
In conclusion we shall give without computation the expressions
for the lowest-order corrections to the Green function of the Yang—

Mills field and for the three-point vertex Iy, which are described by the
diagrams presented in Figures 4 and 5.
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Fig. 4. Second-order corrections to the Green function of the Yang-Mills
field.

The counterterms which remove the divergences from these dia-
grams have the form

— - (2 — 1) (0, — 0,58, + 28 (2 — ) X
>< (6v.9¢u - ap.'%v) ['%u: '-%v]}’ (1-32)

b
b ‘lb K
&Yk
g v 3 v
z /7 Cq p 1,0 cg
@) Y &
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\
jv.,é___A/\Ai
ap cqg

z)

Fig. 5. Third-order corrections to the vertex function T 3
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where
a—1=52m" 4y, (1.33)
3 AZ
zl—1=—-1§n—ln-_—%+bl, (1.34)

in which b, and b, are arbitrary finite constants.

As is seen, for the removal of divergences from the diagrams under
consideration it is indeed sufficient to redefine the parameters of the
original Lagrangian. Note, however, that the counterterms (1.16),
(1.30), (1.32) are not, generally speaking, gauge-invariant. Their
explicit form depends on the intermediate regularization used and the
choice of the subtraction points. In particular, to remove the diver-
gences from the two-point Green function it may be necessary to
introduce a manifestly noninvariant counterterm.

dmtr {o£,5¢,}. (1.35)

Of course, it is the renormalized finite matrix elements and not the
counterterms themselves that have physical meaning. For the theory to
remain selfconsistent it is necessary that the renormalized matrix
elements satisfy the relativity principle. This requirement entails the
specific features of the renormalization procedure in gauge theories,
which are to be investigated in the present chapter.

4.2. THE R-OPERATION AND COUNTERTERMS

In the preceding section we have discussed the procedure of removing
divergences from the simplest diagrams. The considered examples
contain only one integration over dk, and so, when the intermediate
regularization is removed, in order to provide for the corresponding
functions to tend to a definite limit, it is sufficient to subtract one or
more leading terms of their expansion in a Taylor series in the external
momenta. As we have seen, such a subtraction is equivalent to the
redefinition of the eriginal Lagrangian, that is, to the introduction of
counterterms.

To more complicated diagrams such as, for example, the one
presented in Figure 6, there correspond integrals of the form

Vin oo P by ooy Ry ey, @.1)
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2
(e
5 R
Fig. 6.

which may diverge not only when all k; tend to infinity simultaneously,
but also when some of the arguments k; tend to infinity while the rest
remain fixed. In this case it is said that the diagram has diverging
subgraphs. For the diagrams in Figure 6 such subgraphs are repre-
sented by the combinations of vertices (1,2,3) and the lines connecting
them, and by the combination of vertices (2,3,4) and the lines con-
necting them. For diagrams with divergent subgraphs, the simple recipe
for the removal of divergences formulated in Section 4.1 is already
insufficient. In this case the problem is solved by means of the R-
operation of Bogolubov and Parasyuk, which for any Feynman diagram
provides a corresponding finite coefficient function. A detailed discus-
sion of the R-operation may be found in the book of N. N. Bogolubov
and D. V. Shirkov[1], and we shall not repeat it here. For our aims it is
sufficient to know that the R-operation is equivalent to the insertion in
the Lagrangian of counterterms, which may be represented as series in
the coupling constant. In order to formulate the corresponding recipe
we shall need several definitions. A diagram is said to be connected if it
cannot be separated into parts which are not connected to each other by
lines. A diagram is called strongly connected or one-particle-
irreducible if it cannot be transformed into disconnected diagrams by
the removal of a single line. A strongly connected diagram with all
external lines cut off will be called a proper vertex function and denoted
as I(x,,...,x,). A strongly connected Green function G(x,,...,x,) is
expressed in terms of the proper vertex function I'(x,,...,x,) by the
relation

Gxy, ooy Xp)=
={ax ... dnGi (=) Gl — )P ),
2.2)
where G(x; — x}) is the two-particle Green function corresponding to
the ith external line. The topological structure of the diagrams is

conveniently characterized by the number of independent cycles con-
tained in the given diagram. Diagrams with one cycle are called one-



128  Renormalization of gauge theories 4.2

loop diagrams; with two cycles, two-loop diagrams; etc. Diagrams with
a given number of loops are terms of the same order in the quasiclas-
sical expansion in Planck’s constant # of the S-matrix or of the
generating functional for the Green functions. For this reason they form
an invariant combination; that is, all the symmetry properties of the
complete S-matrix are satisfied independently for a combination of
diagrams with a fixed number of loops.

To characterize the procedure for the removal of divergences, the
notion of a diagram index is introduced. Let the coefficient function
with the Fourier transform

1=\ ] o (Zp—k)Hszz)dpb (23)

1<g<n

where index g numbers vertices and / numbers the internal lines
correspond to a strongly connected diagram. In the argument of the 8-
function there is the algebraic sum of momenta which enter into the
vertex number g. The Green function D(p,) has the form

D, (p)=2Z (p)) (mi — pi)~", (2.4)

where Z(p,) is a polynomial of degree r,.

Let us perform a scale transformation of all the momentum
variables (and masses): p;, k; — ap,, ak;. If the integral J(k) converges,
then under such a transformation it will be multiplied by a“, where the
diagram index w consists of the followmg factors: each internal line

contributes r, — 2, resulting in Z (r, — 2), where L is the total

number of internal lines. In the formula (2.3) integration is performed
over L variables p; however, n — 1 integrals are removed by J-
functions (one J-function expresses the conservation law for the total
momentum). Therefore there remain 4(L — n + 1) independent
differentials, which give a total contribution of 4(L — n + 1). If the
interaction Lagrangian contains derivatives, then each vertex with m
derivatives introduces an additional factor m.Summing these factors,
we obtain

m=zl(r1—|—2)—4(n—l)+mn. (2.5)

The index o defines the degree of growth of the coefficient function
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when a uniform extension of all the momentum variables takes place.
At w = 0 this definition, in general, loses its sense, since the
corresponding integral diverges. In this case the diagram index defines
the superficial degree of growth. From the nonnegativeness of the
diagram index follows the divergence of the corresponding integral. The
opposite is not true in general, since the index of a diagram char-
acterizes its behavior only when a simultaneous extension of all
momenta occurs, and has nothing to do with its behavior when some of
the integration variables tend to infinity while the rest remain fixed. In
other words, a diagram with a negative index may have divergent
subgraphs. Negativeness of the index is a sufficient condition for the
convergence of primitively divergent diagrams, that is, of diagrams
which become convergent if any internal line is broken. The diagrams
considered in the first section are primitively divergent, whereas the
diagram in Figure 6 has divergent subgraphs (1,2,3) and (2,3,4).
Obviously one-loop diagrams can only be primitively divergent.

We can now formulate a recipe for the removal of divergences
from arbitrary diagrams by the insertion of counterterms. First of all we
shall introduce an intermediate regularization making all the integrals
convergent [for instance, by means of the formula (1.3)].

First, let us consider one-loop diagrams. As we have already seen,
for the corresponding coefficient functions to tend to a definite limit
when the regularization is removed, it is sufficient to subtract from
them several leading terms of the expansion in the Taylor series in the
external momenta. Such a subtraction is, in turn, equivalent to the
insertion in the Lagrangian of counterterms, that is, to the substitution
of &, + A Z, for the original regularized Lagrangian & ,.

The explicit expression for the counterterms A & | is constructed
in the following way. Let G be a strongly connected diagram with »
vertices and s external lines 4,, having a nonnegative index w. To it
there corresponds the proper vertex function I'i(x,,...,x,). The sub-
tracted polynomial consists of the first terms in the expansion of the
Fourier transform of I'f in the Taylor series, and in the coordinate
representation it has the form

Zy (O—i:)é (k1 —x9) ... O(xp_1— xp), (2.6)

where Z is a symmetric polynomial of the order w. In order to obtain
the counterterm corresponding to the given diagram, it is necessary to
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multiply the expression (2.6) by the product
Sy (x) - Sy (xs), 2.7

and then to sum the obtained expression over p,,...,u, and integrate
over all variables x,,...,x, except one. (If besides vector external lines,
the diagram contains others—for instance, spinor and scalar lines—
then all the reasoning remains the same except that symmetrization is
applied only to lines of the same type.)

We shall now construct two-loop diagrams using as a Lagrangian
Z, + A Z,. The two-loop diagrams thus constructed do not now
contain divergent subgraphs; that is, when the intermediate regulari-
zation is removed, divergence appears only with the simultaneous
tending of all integration variables to infinity. This fact is quite obvious
if the divergent subgraphs do not overlap, as happens, for example, with
the diagram presented in Figure 7. In this case the counterterm A £,
removing the divergence from the subgraph (2.3), has the form

— 220 (9,45 — 0,A3), (2.8)

and the Lagrangian £ + A £, generates, in addition to the diagram
in Figure 7, also the one presented in Figure 8, where the cross
indicates the vertex (2.8). The integral corresponding to the sum of the
diagrams in Figures 7 and 8 diverges only when all momenta tend
simultaneously to infinity, and for the removal of the divergence it is
again sufficient to subtract from the integral the first two terms of the
expansion in the Taylor series, which is equivalent to the insertion in
the Lagrangian of a new counterterm A &

L—>L+ANF, + AP, (2.9)
The proof of an analogous statement when overlapping divergent
subgraphs are present (for instance, as in Figure 6) is more compli-

cated, and we shall not present it here.
Proceeding in this manner, we come to the renormalized

Fig. 7.
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Fig. 8.

Lagrangian
Fo=P+DZ + ... +AZ, (2.10)

where A & ; are local polynomials in the fields and their derivatives,
for which all diagrams containing not more than n loops converge to a
finite limit when the intermediate regularization is removed. Obviously,
in the framework of perturbation theory, we thus calculate the Green
functions to any finite order n. With increasing » the total number of
counterterms, of course, increases; however, the number of counter-
terms of various types may turn out to remain finite. (We call the
functional dependence of a counterterm on the fields the zype of the
counterterm.) In this case it is said that the theory is renormalized. A
renormalizable theory is determined by a finite number of parameters,
having the meaning of physical charges and masses. But if the number
of the counterterm types increases infinitely, (that is, in the higher
orders of perturbation theory there appear structures containing more
and more fields and their derivatives), then the theory is called
nonrenormalizable. Since the insertion of a new counterterm is equi-
valent to the appearance of a new arbitrary constant (the position of the
point of subtraction), nonrenormalizable theories are not determined by
a finite number of parameters. For nonrenormalizable Lagrangians the
perturbation-theory method seems to be useless, and we shall not
consider them here.

The explicit form of the counterterms depends on the concrete
intermediate regularization and on the choice of the subtraction point,
that is, the center of expansion in the Taylor series. An inconvenient
choice of regularization may render the analysis of the renormalized
theory extremely difficult. In the case of gauge theories the so-called
invariant regularizations, conserving the formal symmetry properties of
the nonrenormalized theory, are especially convenient.

4.3 INVARIANT REGULARIZATIONS. THE
PAULI-VILLARS PROCEDURE

The counterterm form of the R-operation is convenient for the investi-
gation of Yang—Mills fields, since it allows us to take into account
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symmetry properties in a simple and explicit manner. As we have
already seen in the previous chapter, the relativity principle allows us to
construct a perturbation theory for Yang—Mills fields, proceeding from
various gauges. The gauges in which the S-matrix is formally unitary
(the Coulomb or Hamilton gauges for the massless Yang-Mills field,
the unitary gauge for the theory with spontaneously broken symmetry)
are inconvenient from the point of view of the renormalization pro-
cedure. In the first two cases there is no manifest relativistic invariance,
and in the latter explicit renormalizability is absent. Significantly more
convenient in this sense are the manifestly covariant gauges, such as the
Lorentz one, for which, as we shall see, renormalizability is obvious.
However, in the Lorentz gauge we cannot construct a Hamiltonian
formulation of the theory, and therefore the unitarity of the S-matrix is
not obvious. From the viewpoint of the operator formalism the S-
matrix in the Lorentz gauge acts in the “big’ space containing both
physical and nonphysical states (longitudinal and time ‘photons”,
scalar fermions, Goldstone bosons) and, generally speaking, is unitary
only in this space, in which the metric is indefinite. The unitarity of the
S-matrix in the physical subspace, the states of which correspond to
fields of matter and to transverse vector quanta, is a consequence of the
relativity principle, according to which all observables are independent
of the gauge condition actually chosen. This is confirmed by the explicit
calculations of the previous chapter, where it was shown that an
explicitly unitary generating functional for the coefficient functions of
the S-matrix in the Coulomb gauge may be transformed identically into
a functional corresponding to the Lorentz gauge. The reasoning given,
however, was of a formal character, since we did not pay attention to
the divergences appearing in perturbation-theory calculations of these
functionals. Indeed, in quantum theory the relativity principle should be
applied to renormalized entities free of divergences. The transfer of this
principle to a renormalized theory is not trivial. Renormalization is
equivalent to the redefinition of the original Lagrangian. Therefore it is
necessary to prove that the renormalized Lagrangian is gauge-in-
variant. Then we may apply to it the reasoning of the preceding chapter
and rigorously prove the equivalence of various gauges and, con-
sequently, the unitarity of the S-matrix.

This latter statement needs to be clarified. As we have already
seen, the explicit form of the renormalized Lagrangian depends on the
intermediate regularization used. What we have said above applies
only to the invariant intermediate regularization, that is, to the regulari-
zation which conserves the formal symmetry properties of the nonre-
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normalized theory. This, of course, does not mean that for the
calculation of the S-matrix one is not to use a noninvariant regulari-
zation. In that case, however, the regularized theory is gauge-nonin-
variant, and the reasoning of the previous chapter, which demonstrates
the equivalence of various gauges, is not applicable to it. The relativity
principle is now valid only for the renormalized S-matrix, when the
regularization is removed. All this complicates the proof of unitarity
and makes it less clear. Therefore we shall start describing the
renormalization procedure for the Yang-Mills theory by constructing a
gauge-invariant intermediate regularization. The specific features of the
invariant regularization of gauge theories are due to the interaction of
Yang-Mills fields in vacuum. The interaction with fields of matter does
not introduce any difficulties: the corresponding diagrams are regular-
ized by means of the obvious generalization of the gauge-invariant
Pauli-Villars procedure.

We shall show this by using the example of the interaction of the
Yang-Mills field with a spinor field ¥ described by the Lagrangian
(1.3.1). The generating functional for the Green functions has the form

20, A =N exp{ i [ @y + o (0,4 +
+ i (0 — g A7) b — pobtp + JEAL +
+ fp + (pn] dx} det M [] dA, dbdp. (3.1

Divergent diagrams, not containing internal vector lines (spinor
cycles) are regularized in the same manner as in electrodynamics, that
is, by subtracting analogous cycles along which the spinor fields with
masses u; propagate. Actually, if we are interested only in spinor
cycles, we may set the sources 7, n equal to zero. The remaining
Gaussian integral over ¢ and ¢ is calculated explicitly. It is equal to
det X, where

Xo=iv,0, — wy — igly, A (3.2)
The regularization consists in the substitution for det X, of the product
det Xo— det X, [[ (det X,)%i =
=1

n
=exp{Tr In Xo+ ) ¢; Trln X,}, (3.3)
i=1
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where the operators X are constructed analogously to the operator X,
X;=i0 —p; — igl*A%, (3.4)

and the coefficients ¢; satisfy the conditions
Lej+1=0, Fepj=o. (3.5)

In order to verify that the substitution (3.3) really regularizes the spinor
cycles, let us represent det X in the form

det X; = det (i0 — p;) det {l — g (0 — p)) "' il*A%}. (3.6)
The first factor does not depend on the fields 4, and therefore can

be included in the normalization constant N. The second factor may be
transformed into

exp{Trin{l — g(i0— p)~'iMr4a%} =
=exp{ —[@ 4 ([1°2% (1) &' (51 — 2 X
XA (1) S' (6 — x) | dxy dra + ...
oo+ g (oG () S0 —x) .
DA () S (g —x) dxy .. dra|}, GB)

where S/(x) is the spinor Green function

—1 S n;+p

SI (JC)E (15 — l-"j)_-l = (2n)

_'px
u‘j—p‘l—io e~xdp.  (3.8)

Passing to Fourier transforms, the nth term in the exponential can
be written as

tr vy (b +8) o v,y + P k)]
) d : ‘
const-| [ j 2 W= W=+ e (11— (7 + b))
X tr [PHAG (k) ... TA% (k,)] X

X

XO(kp—Fy— ... -—-k,,_l)] dky ... dky,. (3.9)
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Here the first trace is related to the spinor indices and the second one to
the internal degrees of freedom. At n < 4 the integral over p diverges.
At large p the integrand in this integral may be represented as a series in

“‘i)
Pn(P)+P«?Pn_2(p)+ coo Fnf . P, (p) P, (p)
Py (p) + 1iPyy o (p) + ... + n* Py, (p) Py, (p)

P,_,(p) Py, 5 (p)
[ —Fy [+ 60

X

where P(p) is a polynomial of the orderj in p. The coefficient of u**
large p behaves as p~"~*. If the coefficients c ¢; satisfy the condltlons
(3.5), then the two highest-order terms in the asymptotlc expansion in p
of the integrand in the sum (3.3) fall out, and the asymptotic behavior of
the regularized expression is p™"~*. Thus, all the integrals over p
converge.

The regularized generating functional can be represented by a path
integral in which the exponent contains the local action, if one uses the
representation of det X in the form

[det x,]*' =
S exp{ S [i9; (0 — gr*A® )1171 — H]‘l’ﬂpi] dx}H dg; dp,
(3.11)

where ¥, Y, are the auxiliary spinor variables. The exponent of the
determinant on the left-hand side of this equality depends on the
commutation properties of the fields y;. The exponent +1 corresponds
to anticommuting variables, and —1 corresponds to commuting var-
iables. By choosing integers for the coefﬁc1ents ¢; in the formula (3.3),

we can represent the regularizing factor H (detX )7 in the form
J=1

n n ¢l
[T et x7 = exp{i » [Z] L5 (3 — gT*A%) s —

j=1 =1 1

- wﬁwkwik]] dx ] dipdi } (3.12)

x, i,k
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Here the coefficients ¢; and the masses y; are assumed to satisfy the
conditions (3.5). The commuting auxiliary fields ¥;,, ¥, correspond to
the negative coefficents c;, and the anticommuting auxiliary fields
correspond to the positive coefficients c;.

Adding to the action in the exponent (3.1) the action from the
right-hand side of the equality (3.12), we obtain the regularized
generating functional in the form of a path integral of exp{i X local
action. The action (3.12) is manifestly invariant with respect to
simultaneous gauge transformations of the fields .7, ijk, ¥y, and
therefore the regularization (3.3) does not change the symmetry
properties of the generating functional.

The generalization of this procedure to the case when the Yang-
Mills field interacts also with a scalar field is obvious. The only
difference is in that, since scalar fields are commuting entities, the sum
of the closed cycles is equal to (det Y,,) ' and the regularization consists
in the substitution

(detYo) ™' — (det Yo) ™' III (dety;)~°1. (3.13)

The Pauli-Villars regularization is applicable in those cases when the
interaction Lagrangian is quadratic in the fields forming divergent
cycles. Therefore, it cannot be generalized to the Yang-Mills field
itself. Here one has to resort to more sophisticated methods. We shall
further restrict ourselves to the consideration of the Yang-Mills field in
vacuum.

At present there exist two methods for invariant regularization of
non-Abelian gauge theories: the method of higher covariant derivatives
and the method of dimensional regularization.

The first method is, actually, an invariant generalization of the
standard regularization procedure, when free propagators are regular-
ized by the subtraction

1 1 1 1

TET TR TN T T eI (1)

(for simplicity the scalar propagator is written). Such a subtraction is
equivalent to the insertion in the Lagrangian of terms with higher
derivatives:

1 1 1
7 0u®0u® = 5 0,90, ¢ + 537 Do Oo. (3.15)

In the case of the Yang-Muills field such a procedure violates the gauge
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invariance, since an ordinary derivative is not a covariant object. A
natural generalization of the regularization (3.15) consists in adding to
the Yang-Mills Lagrangian a term containing higher covariant de-
rivatives, for example,

QYM-—)g.}}I‘d:-é—tr{g_uvg-uv +%Vag-uvvag-uv}=

i 1
=§tl‘ {g.uvg.uv -+ 'A—z(aag.uv — & [ma’ g-p.v])z}- (316)

The substitution (3.16) leads to the desired modification of the free
propagator. However, the cost of achieving invariance is the ap-
pearance of new vertices in the interaction Lagrangian. Below we shall
discuss this regularization in more detail, but now we just point out that
due to the appearance of new vertices with derivatives, the regulari-
zation is only partial—in the regularized theory the second-, third-, and
fourth-order diagrams remain divergent. Thus the method of higher
derivatives alone does not solve the problem completely, but only
reduces the problem to the investigation of a superrenormalizable
theory, that is, a theory generating a finite number of divergent
diagrams. Below it will be shown that the remaining diagrams can be
regularized by means of a somewhat modified Pauli-Villars procedure.
As a result we shall describe an explicitly invariant Lagrangian which
generates convergent (for finite regularization parameters) Feynman
diagrams. The defect of this method is that it is relatively cumbersome.
Due to the appearance of new vertices in the interaction Lagrangian,
the number of diagrams is greatly increased, impeding practical cal-
culations. However, for investigating fundamental problems of unitarity
and renormalization this method is the most convenient one, because
the existence of a manifestly invariant expression for the regularized
action allows us automatically to apply to the regularized case the
reasoning of the previous chapter on the equivalence of various gauges,
and thus to prove the unitarity of the renormalized theory.

Unlike the method of higher covariant derivatives, dimensional
regularization is not reduced to some modification of the original
Lagrangian, but deals directly with the Feynman diagrams. This
method is based on two observations:

1. The formal symmetry relations between Green functions (general-
ized Ward identities) do not depend on the dimensionality of the space
time (n).

2. At sufficiently small or complex n all diagrams correspond to
convergent integrals.
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Thus, generalized Ward identities can be proven rigorously in the
region of n where all integrals converge, and then by analytical
continuation one can pass over to n = 4.

The method of dimensional regularization has turned out to be
convenient for the calculation of concrete diagrams and is quite widely
used in practical calculations. It has, however, some shortcomings from
the viewpoint of the investigation of matters of principle.

Since if 7 is noninteger or complex, no Lagrangian can be found to
correspond to the regularized theory, the simple proof of unitarity based
on the change of variables in the path integral is not applicable, and it is
then necessary to deal directly with Feynman diagrams, which is
significantly more laborious. Additional difficulties arise for the
regularization of theories containing fermions. Since the algebra of the
y-matrices depends crucially on the dimensionality of the space, such
theories require special consideration.

Thus, the method of higher covariant derivatives and the method
of dimensional regularization, in a sense, complement each other; the
first method is more convenient for general proofs which require, in
fact, only the existence of the invariant regularized action, while the
second method is more effective for calculating concrete processes.

4.4 THE METHOD OF HIGHER COVARIANT
DERIVATIVES

The regularization will include two steps: first, by inserting in the
Lagrangian higher covariant derivatives we shall pass to the superre-
normalizable theory, in which only a finite number of one-loop dia-
grams are involved, and then we shall regularize the one-loop diagrams,
using the modified Pauli-Villars procedure.

The modification of the Lagrangian (3.16) is insufficient to
provide for the convergence of all the diagrams containing more than
one loop. The Lagrangian (3.16), although corresponding to the
superrenormalizable theory, generates a divergent two-loop self-energy
diagram of the fourth order. In order to remove this divergence also, we
insert in the Lagrangian a term containing fourth-order covariant
derivatives:

Zyu—> Lo =g 0 {F W F oy + 47 PFLVF L) @41

The gauge invariance of the regularized Lagrangian is obvious.
The regularized generating functional for the Green functions has
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the form

Zy()=N"" S exp{i S[ A )+ 55 {f ) BuALY +
+ 7545 dx}detMHd.s#, (4.2)

where f(0) is an arbitrary function of the d’Alambertian operator,
defining the concrete form of the generalized a-gauge. The regularized
free propagator of the Yang-Mills field is constructed in the usual
manner:

ab kyky 1 akyky
Duv_6 [ - (guv - &2 ) k2+ A—igb - k2 (— k) ] (43)

In the Lorentz gauge (a = 0) at large k the propagator behaves as k~°.
If a # 0, then we shall choose the function f(—k?) to be such as not to
impair the asymptotic behavior of the propagator as k — ~ and &k — 0,
for example,

f(—k%) =Fk*— %%, 4.4

where %° is an arbitrary parameter.
Explicitly writing out the term ~A™* in the Lagrangian (4.1),

8A4 {[D @y -9¢ auﬂv)F—'
— 2[00 Byt — 0,54,)] 0g [Sa F oyl + ...
oo Lty lShy, SHL]TRE (45)

we see that it generates vertices with three, four, five, six, seven, and
eight outgoing lines. The maximal number of derivatives in each of
these vertices is 5,4,3,2,1,0, respectively. Let us now calculate the
index for an arbitrary diagram. Taking into account that in our case r, =
—4, we obtain that the index of a diagram, containing n, vertices with &
outgoing lines, L, internal lines, and L., external lines is given by the
formula

0<<4 4 n3—ng—2ng— 3n; — 4ng — 2L, =
=6 — 21 — n3 — 2ny — 3n5 — 4ng — d5n; — 615, (4.6)

where IT is the number of closed loops.
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It is not difficult to see that only integrals corresponding to one-
loop second-order diagrams with two external lines, or third-order
diagrams with three external lines, or fourth-order diagrams with four
external lines, can be divergent. Analogous divergent diagrams are also
generated by the determinant det M. Converging integrals correspond
to all other diagrams, including one-loop diagrams with external lines
corresponding to fictitious c¢-particles.

For regularization of one-loop diagrams it is natural to try to use
the Pauli-Villars procedure. It is obviously sufficient to regularize the
strongly connected one-loop diagrams.

The total contribution of the closed cycles with external lines 4,
may be represented as

1 628
7 — -1 S . S _ A a b
=N exp{ i [2 54T () 548 (7) (x) g, (y) | dx dy +

+ o S {F(11) 0,42 (x))? dx} detM(4) [[ dg,.  (47)

Besides strongly connected diagrams, the expansion of the
functional (4.7) contains also their products, that is, disconnected
diagrams. These latter ones, obviously, automatically become finite if
their connected components are regularized.

We have used here as an argument the fields 4, instead of the
sources J,, having in mind that the one-loop diagrams generated by the
functional Z, can be included as subgraphs in more complicated
diagrams, that is, will be integrated over 4, with a certain weight.

The expansion of Zy(A4) in perturbation-theory series generates
closed cycles, along which vector (g,) and scalar (c) particles of zero
mass propagate. By analogy with the procedure performed for the
cycles of fields of matter, one could regularize Z,(A4) by subtracting
analogous cycles along which vector and scalar particles with masses u;
propagate. However, such a subtraction would violate gauge in-
variance. Unlike the generating functional for one-loop diagrams of
matter fields, which is invariant with respect to gauge transformations
of its arguments, the functional Zy(4,) has no such property. This is due
to the presence in it of a term fixing the gauge, and of cycles of fictitious
particles, which violate the explicit gauge invariance. Nevertheless, as
we shall now show, the divergent part of the functional Z,(4,) is
invariant under gauge transformations of the fields 4,. To an accuracy
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of finite terms, which do not need regularization, the functional (4.7)
may be transformed into the manifestly invariant form

z ==N"SCXP iS L eyt dxdy ) x
0 2 849 (x)8AS () ™ v ’

>< det Vi H 6(Vllqu) dqu + te (48)

X

where

Vi =0uq, — g, q,], (4.9)

and - -+ denotes the finite terms not to be regularized.

To demonstrate this, we shall use a method already familiar to us.
We introduce the functionals A (.«/,, g,) and A, (.%/,, q,), defined by
the conditions

Ay (A a) T8 (V02) do=1, (4.10)

Ay (st ) S T[0(0e =W W) do=1,  (a11)

where the gauge transformation g, — g represents a shift by a function
depending on .¢/,, w:

1
=gt i — )=
1
=4, + T {0u—g[#, u]+ 0 @)}, (412)
where ¢ is a small parameter.

The integration in (4.10) and (4.11) is carried over the invariant
measure on the group Q. The functionals A,, A, are obviously
invariant under the transformation (4.12).

Using the same arguments as in Chapter 3, we see that on the
surface vV, g, = O the functional A, is equal to

A, (.9¢u, qu) Iquu=0 = det e‘lV:i —

=det[{00 — g0, [, | — g[s4,, 3,1 + &[4, [s4,, 1}]-e7",
(4.13)
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and on the surface d, g, = W the functional A, equals
Dy (£, q,) lau"u““” =dete™' {1 — g0, 54, I} =dete™'M.
(4.14)

The constant factors det ¢ ' lead only to the redefinition of the
normalizing constant V, and therefore we shall henceforth omit them.

Taking into account (4.10) and (4.14), we rewrite the functional
Z, as

oAl . _1_ 6281\ a b
Z,(A)=N Sexp{lS[Q DREIAT] g, %) g, (v) +
+ 35 1 (D)W ()8 (x— 1) dxdy } X
X H 6(ouqu —W)A4y (o qu) 0 (qufm)) X
X Ay (s, ¢,) dodW dg,. (4.15)

Passing to new variables

qu—>qﬁ>-1, o l>aw (4.16)

we have

-t . l_ 6231\ © ar o b
Z,(A)=N SeXP{ ‘ S[ 2 5A%(x) 847 (y) [ ] [ @] +
1
+ 5 F @D W Y8 — )] dxdy } [[8(a,90— W)X
X Ayd(V,g,)det V2 dodW dg,. (4.17)
The 6-function &0, g2 — W) removes the integration over w. The
appearing Jacobian cancels out with A ,,, and w is expressed in terms of
q,, W by the equation
0, 0u—glst, ul+ 0 W) =e(W —0,q,). (4.18)

The solution of this equation has the form

u=eM~" (W —d,q,) + O (). (4.19)
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Substituting this solution into the formula (4.17), we obtain
1 828,

Zo(shy=N"{ exp { i\ [3&@%
X [+ VM~ (W — 0,01 [y + VoM™ (W — 0,0,)] +
+ %; {f(mw (X)}zﬁ(x—y)]dxdy } X
X det V2 []8(9,4,) dW dg, + O (e). (4.20)

Since the functional Zy (%) in reality is independent of €, we can set ¢ in
the formula (4.20) equal to 0, as a result of which the last term
disappears.

The expression (4.20) differs from (4.8) only in that g, in the
exponent of the exponential is replaced by

gu+ VM~ (W —d,q,). (4.21)

Let us show that the additional diagrams appearing as a result of
this correspond to convergent integrals. For this we shall take ad-
vantage of the relation

S 6281\ [V (‘)]ad _ ’abc 6SA c 422
8AC (x) 848 (y) L WP X =28 m@(y),(. )

following from the gauge invariance of the action S,. This relation
allows us to rewrite the exponent in (4.20) as

IS 828, o () g2 () i dy + t"”‘S 8S, %
2 J 849 (%) 847 (y) 9ty ) EX ey T & 3A% (x)

1 - b -
X [gv 4+ 3 VoM™ W —0,0,)] [M™' (W — 0,9,)] dx.

(4.23)

It is easy to see that the second term in (4.23) generates only
convergent diagrams. Indeed, the propagator of g, at large g behaves
like ¢~°, and the propagator of W decreases no less rapidly. Therefore
the insertion of the vertices generated by the second term in (4.23) in
any diagram makes it finite. In particular, the contribution of this term
on the mass shell is, in general, equal to zero.
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Thus, we have shown that the divergent part of the functional
(4.7), which we shall denote by Zj(.27), can be transformed into the
form (4.8). Now let us verify the gauge invariance of this expression.

For this, note that in integrating over g, we can write down Zy(4)
in the form

Z, (A)=detQ; " det V., (4.24)

where

detQ) "= S exp{iS [—;—G-AT%—(;) tx )qv(y)] dx dy})(

X []8(V,4,) dg,.. (4.25)

The functional det v} is manifestly gauge-invariant. Under gauge
transformations of the ﬁelds &, the derivatives 6 ,/ 84 %(x) 64 ()
transforms contragrediently. From the invariance of S, it follows that

Sy 82,
84 (x) 842 () BAL (x)84% (4)
X (678" — gi®Tul (1) 8" — gt Mul () 8 + ...). (4.26)

Therefore, if, together with the gauge transformation </, — &/}, the
change of integration variables

gy — ©q,07", (4.27)

is performed, then the integral (4.25) will remain unchanged. Thus,
finally,

Zo(4°) = Zo(s4). (4.28)
The regularization consists in the substitution

, - -1 4.29
Z, (A)—detQ;™" Il[deth 2 det B det B/, (4.29)
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where
det B, = det {Vi —ui}=
= S exp { — 5 tr S [DV2b — uZbb) dx} [[dbab, (430

PP SO 1 A N
= p{ [2 aAﬁ(x)éAz(y)q“(x)q"(y)—

—Fab - ’ﬁ] dx dy } [1e(Va.) dg..  (431)

The variables b and b are assumed to anticommute, and the coefficients
¢; satisfy the Pauli-Villars conditions

ch+l=0; chu‘l%= , (4.32)
BL)':Bj at u,-=0, QOT—Q] at Ll,"—_io.

The formula (4.29) describes the usual Pauli-Villars regulari-
zation, which was discussed above in detail for spinor fields as an
example. From each closed cycle along which a vector (g,) or scalar
(b) particle propagates, analogous cycles, in which the internal lines
have masses y;, are subtracted. Due to the conditions (4.32), the
leading terms in the asymptotic expressions of the integrands cancel out
and the integrals become convergent. Since Zy(.«/) differs from Zy(.«/)
only by finite terms, a similar procedure obviously regularizes Z (%)
also.

The factors det Q; and det B; are gauge-invariant. The invariance
of det B; follows directly from the integral representation (4.30). The
effective action, occurring in the exponent, describes the gauge-in-
variant interaction of scalar fields b, b with the Yang-Mills field. Hence

det B; (o£°) = det B; (s#). (4.33)

The invariance of the functional det Q, is demonstrated in the same
way as the invariance of the functional det Q,. Thus, the regularization
(4.29) is indeed gauge-invariant.

We can now write down the explicit expression for the completely
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regularized generating functional for the Green functions. It has the
form

Zatt =N fexp{ 1 { [ FusFuo + 5 VTV —
1 1
- E[f (D) du'%p,]Q - 7511'0¢]!] dx } X

X det M [ detQ; T e Bi [ ast,. (4.34)
!

X

By means of the integral representations (4.30), (4.31) and (IIL3.51)
this expression can be represented by the path integral of exp{i X local
action} over the Yang-Mills fields ./, and the auxiliary fields ¢, c, g,, b,
b.

One could also pass in the formula (4.34) to the generalized
covariant gauge, by introducing, for example, the term

o= (VP42 (4.35)

for fixing the gauge. In addition, the determinants det B, and det B;
should be correspondingly modified. We shall not deal with this here.

For finite A, u; all diagrams generated by Z, converge. At the
same time Z, has the same transformation properties as the non-
regularized functional formally has. In particular, as we shall see
below, the generalized Ward identities are valid for it.

4.5 DIMENSIONAL REGULARIZATION

The divergence index w depends significantly on the dimensionality of
the space-time. For a space of dimension # the product of independent
differentials gives to the diagram index a contribution equal to

n(L—m+1), 5.1)

where L is the number of internal lines and m is the number of vertices.
Therefore, the diagrams to which divergent integrals correspond in a
four-dimensional space may turn out to be convergent in a space of
smaller dimensionality. On the other hand, going from the four-
dimensional space to an n-dimensional space does not influence the
symmetry properties. The gauge transformations are generalized in a
natural way to a space of any positive dimension. One can go further
and define the Feynman diagrams for spaces of noninteger and even
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complex dimensions. In this case, of course, one cannot speak about
any symmetry of the Lagrangian, since the concept itself loses its sense
for a noninteger n. Nevertheless, we can investigate the Green
functions in a space of arbitrary dimension. As we shall show below,
gauge invariance in terms of the Green functions is equivalent to the
existence of relations between these functions, known as the general-
ized Ward identities. These relations make sense in a space of any
dimension, and in the region of n where all the integrals converge, they
can be proved rigorously. The Green functions, considered as functions
of the space dimensionality n, have pole singularities at n = 4.
Subtracting these singularities, we can continue the Green functions
analytically to the point n = 4. The functions obtained in this way will
satisfy the generalized Ward identities.
As the simplest possible example consider the integral

n 1
I=Sd i Pr e ey ¥ [y s (-2)

For integer n < 4 this integral converges. Using the formula
|
dx (5.3)

1
E=§ lax+ o (1=0)2 "

we can rewrite it in the form

5.4)

— n 1
I—OdeS L o oy s w2

Rotating the contour 90° and changing the variables k, — ik,, we come
to the integral over the n-dimensional Euclidean space

(5.5)

R n ]
1—L§dxgdk (& +m?—pix T =0

The integral over k is readily calculated by using the known
formula

/2 -'2‘-_“ n
S e _ e r (a—— -2—) (5.6)
(k¥ + )¢ I(a)

where I'(a) is the Euler gamma function. The right-hand side of the
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equality (5.6) can be analytically continued to complex values ofn. We
shall treat the formula (5.6) as the definition of the integral on the left-
hand side for an arbitrary space dimension. Thus, the integral (5.2) is
equal to
n ’ 22
1=in2f‘(2—%)de[mQ—pr(l—x)]2 . (57

0

At n = 4 the I'function has a pole and I tends to infinity. This
corresponds to the divergence of the original integral over the four-
dimensional space. As usual, the divergence is removed by means of a
subtraction procedure. Expanding 7 in the Laurent series around the
point n/2 = 2, we have

1

— -2S 2 __ 2] — n_
1—£_2 v—l—modxln[m p2(1 x)x]+0(2 2).

2 (5.8)

where v is a finite constant. Performing subtraction at the point \* = p?,
we obtain the final result in the form

1
T(p% W) = in? S dyln o p2x(l—x) (5.9)
0

m?—Ax(1—x)°

For calculations of arbitrary Feynman diagrams it is necessary to
formulate also rules for treating tensor entities in an n-dimensional
space. By definition,

EuvPy ="y PuPu="% Guv8va=0s &GuEw=n. (5.10)

In a similar manner, for theories including fermions, objects are
introduced which possess the algebraic properties of the y-matrices:

Yqu"l" Yv\’u=2guv1v (5-11)

where [ is the unit matrix, and
tr {Yqu} = Q?Q';w’ (5 12)

vbvu=2(1—5) 8 VuPIVu=14pg+(n—4)p3.  (5.13)
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Note, however, that the usual definition of the matrix s,

1
Vs = 77 CaguvVaVgYuVy (5.14)

is not applicable in a space of arbitrary dimension, since the completely
antisymmetric tensor ¢,,,, is defined only in the four-dimensional
space. Because of this, the theories to which the matrix y, pertains need
special consideration, and in general the dimensional regularization is
not applicable to them.

The recipe for the dimensional regularization of an arbitrary
Feynman diagram consists in the following. In the integral cor-
responding to the diagram

1 L
=Y k), (k) -+ (k,), [T G =mi+0),
i=1 i=l

(5.15)

where L is the number of internal lines in the diagram, 7 is the number
of independent cycles, and the momenta g; represent the algebraic sums
of the integration variables k; and the external momenta p,, it is
necessary to use a parametrization of the Green functions which allows
us to perform the integration over k; explicitly. For this it is possible to
use either the Feynman parametrization (5.3) or the so-called a-repre-
sentation

(o]

(PP —m?2+i0)~ = (i)~ S daexp {ia (p* — m?* + i0)}. (5.16)
0

After passing to the a-representation, the integrals over k become
Gaussian and are calculated by formulas of the type

S (QL;’%eXp (— xk? + 2ka) = (%)% (27) " exp { “—; }; (5.17)

for noninteger n the formula (5.17) is considered to be the definition of
the integral over the n-dimensional space.

The integral defining the function F converges in a finite region of
the complex variables n. At n = 4 this function has poles. (In practice
these poles appear, for example, as singularities of the Euler I-
functions, which result from integration over the parameters a.)
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By singling out the tensor structures by means of the combinatorial
formulas (5.10), the functions F can be represented as a sum of scalar
functions F;. If the corresponding diagram has no divergent subgraphs,
then the Laurent expansion of the functions F; around the point n = 4
has the form

F;(p) =i%?_%'1’l + B(p} pp)+0(—4), (5.18)

where A(p, p; p;) is a polynomial of order equal to the diagram index.

Subtracting from the function F(p) several leading terms of its
expansion in the Taylor series in the momenta p;, we obtain a function
which can be analytically continued to the point n = 4.

For diagrams containing divergent subgraphs the subtractions are
performed successively. Counterterms are introduced, which remove
the divergence from the subgraphs, and then a subtraction is performed
for the diagram as a whole. An important property of the dimensional
regularization is the possibility of shifting the integration variables
within regularized integrals. It is just this property, together with the
tensor algebra (5.10), which allows one to prove the generalized Ward
identities within the framework of dimensional regularization.

In conclusion we shall illustrate the dimensional-regularization
method by a simple example—the calculation of second-order cor-
rections to the Green function of the Yang-Mills field. This correction
is described by the diagrams in Figure 4.

To the diagram (a) in the diagonal a-gauge there corresponds the
regularized integral

g2 dnk aa,a ,
l—ll.‘:’\b/ (p)a _— — 'El_ S —(Q—J.L_)T e i zabblb‘ ><

X[ + k), g, + (p—2k),g,, +(k—2p), g,]1X
X[(k + p)w gvv, + (k - 2p)vl gvvz + (p - Qk)\’ gv.w] X
(— i8*) (— 8%
X-FF7 Gun »— AT 0 Qv =
= 0™ | o (g [0k + P+ (b — 2071+ (1 6) pypy +
+ (4n - 6) ku,kv + (3 - 2/’1) (pvku + pukv)} X
X {(k? + i0) [(p — k)? + O} ', (5.19)
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where, in order to conserve the correct dimensionality of I1
dimensional coupling constant g3 = g”u*™" has been introduced.
Using the formula

uvs a

1
== US dz [k2 (1 —_ z) + (p —_ k)2 212 (5.20)

1
k* (p — k)?

and passing to new variables
k— k 4+ pz, (5.21)

we write this integral in the form
|

hH dﬂk
02 (p), = 230§ d2 (e [g,0 (5 — 22 -+ 22 77 + 20,08 +

+ (4n —6) kyky — (4n —6) 2 (1 — 2) pypy +
+ (1 —6) pupsl (&2 + pP2 (1 —2) +i0] . (5.22)

In this formula the terms odd in k are dropped, since their contribution
vanishes for symmetry reasons. Passing to the Euclidean metric, it is
possible to integrate over k& by the formula

-1
="
[— &2+ p?2 (1 — 2)1*

o

S dk?

0

S (#)"d"%  ___in"?
(&2 + pz (1 — 2)) i
r(3)

— (! [—p?z(l—z)]’”%“’x

n n _
> r (.'”+7) ;u()l —5 ) . (5.23)

For a noninteger or complex n this formula represents the definition of



152 Renormalization of gauge theories 4.5

the integral in the left-hand side of (5.23). Integrating, we obtain

1
i Gab
12 (ol =2 { 22 { (g, 6 — 22+ 229 2 —

(4312 0

- (4’7‘ - 6) PquZ(l - 2) + (n - 6) pupv] ><

n
——2
Xl=pz(1 =27 T(2—%)—
2 %_[ n
—3(—Dgwl—pz(1—217 T(1—%). (5.24)
Integration over z is performed using the formula

m—k— —n)I'(m—
dz zm—-n—l (l _z) k—1 — F(l:n(anl n(ﬁ k) k) . (525)

[T I T

As a result we obtain

L9 T2
‘g a
Iy (p)o = — 6”{gwp[ ———— (5 )

(4m)™? I'(n—2)
r@rGE-) rEr)rEoy)
T'(n—1) I'(n)
rz{= rz( 2
+6(2n——n1) r((:))]—pupV[(4”_6) 1‘((:))"

L T ™

In deriving this formula we have used the relation
, =1 _r@eo—

As is seen, in the limit n — 4

“u.v (p)g — oo,
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since the function I'(2 — n/2) has a pole at this point. Expanding
IT,.(p), around n = 4 in the Laurent series and taking into account that

( ) _1+em(

we obtain the final expression for I1 (D)

) +0(e?), (5.28)

iy (p)a=

26ab ]9 _ 1 _
— o {@wr — pup) (5 e '+c ) = pups(d + ™) +

. 19 2 2
+ (guvpz - pupv) 6 lnfup_i' 2 PuPy In— p }'

P el (5.29)

where ¢, and 4 are finite constants.
The integral

d"k  ky (k — p)
I, (p), = 2g?S @ we=wr S - (530

corresponds to the diagram (b). Calculations completely analogous to
the preceding ones give

HSZ (p)b lGJ‘L" 6ab{ (gu.vp pupv) ( -2 ! + Cb) +
+ '2—pupv (e='+ d)+ (guvp2 — pupv) Flntﬁ +
1 2
+gapin 251 (531

And, finally, the diagram (c) gives a zero contribution. The contri-
bution of this diagram is proportional to the integral

d'k
[= S‘kT (5.32)
In the method of dimensional regularization the formula
_(dre @yt
I—ST)"————O, (5.33)

a=0,1,..., m.
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is valid. Thus, the total second-order correction to the Green function
of the Yang—Mills field has the form

I35 (p) = 1134 (p)o + Ti% (p), =
: 26ab 10 0
=’i%nv (guvP® — Pupy) { e +c+ ]Tln

p2
p?

}_ (5.34)

The divergence as ¢ — 0 is removed, as usual, by a subtraction
procedure. The corresponding counterterm is equal to

2
(22— ) =5z e~ +o, (5.35)

in agreement with the formula (1.33) from Section 4.1. As is seen, the
expression (5.34) is automatically transverse, and for the removal of
divergences there is no need of gauge—noninvariant counterterms, such
as the counterterm for the mass renormalization of the Yang-Mills
field.

4.6 GENERALIZED WARD IDENTITIES

The renormalization procedure is usually formulated in terms of the
Green functions. Unlike the S-matrix, the Green functions are not
gauge-invariant objects, and their values depend on the specific gauge
condition chosen. The relativity principle is equivalent to the existence
of relations between the Green functions, which we shall, by analogy
with electrodynamics, call the generalized Ward identities. These
relations provide for the physical equivalence of various gauges and
play a key role in the proof of the gauge invariance and the unitarity of
the renormalized S-matrix. From them it follows, in particular, that the
counterterms needed for the removal of the intermediate regularization
form a gauge-invariant structure.

We shall start with the derivation of the generalized Ward
identities for regularized nonrenormalized Green functions. In all
further reasoning only the gauge invariance of the regularized action
will be used. We shall not, therefore, write out its explicit expression,
having in mind that we can always use for this purpose, for example, the
formula (4.34).

As the initial representation of the generating functional for the
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Green functions we shall choose

Z=N""! Sexp{i[SA—

— 3\ [ @ W e+ 7,58,]ax] | X

X A (st) [[ 80,58, —W)dstaW. (6.1)

Here S, is the gauge-invariant action functional, which contains all the
regularizing factors. For obtaining the generalized Ward identities we
shall use the same method as was used for the proof of the gauge
invariance of the S-matrix.

Let us introduce the gauge-invariant function A(/) defined by the
condition

A (st) S 8[0,582 — W (x) — x ()] do =1, (6.2)

where x(x) is an arbitrary matrix function. Allowing for (6.2), we
rewrite Z(J) as

ZU)y=N"" Sexp {i[sA — ;—trS [7u8+ 55 (HOwP?]dx]}X
X A (s) A (D] ] 8(@usts — W) X

X 8(0,48 — W — ) dst dW do. (6.3)

We pass to new variables

Sty —> Sy, (6.4)

oo\

The integrals over w and W are removed by &-functions, and the
Jacobian appearing cancels with A(.%/). -

Taking into account that the value of the functional A(.%/) on the
surface,

Oty =W +y (6.5)
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is equal to the value of the functional A(</) on the surface,
Ot =W, (6.6)

we obtain

Z()=n"" Sexp{i [ss— 1 S[Ju,aqu

+ 5 (F(0) Gty — 0] dx } det M [[ dst.  (6.1)

Here
0=ty + Out — g[Sy, u]+ 0 (dd), (6.8)
and u(x) satisfies the equation
Ou—go, [y, ul 0 W) =W — 0,8, =—%.  (6.9)
Representing the solution u by a series in X, we have
u=—M""x+ 0, (6.10)

where M~ is the inverse operator of M. The kernel of this operator,
M}, (x,), satisfies the equation

OMz (x, y) — gt*“0, (AL (x) M%) (x, y)) =
=8 (x — y) (6.11)

and obviously coincides with the connected part of the Green function
of the fictitious particles in an external classical field .27, (x):

Mu(x) .
Mz (x, 1) =0"D"(x — y) +

—l"gtadbSDO(x—z)au [4%(2) D’ (z — y)ldz+ ... (6.12)

Since the original functional (6.1) does not depend on Y, its derivative
with respect to x is equal to zero

dZ
I x-0=0' (6.13)
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Substituting into this formula the expression (6.7), obtained by the

identity transformation of the functional (6.1), and performing the
differentiation explicitly, we get

Gexp{i [sa + § [242 + 2 () 0,407] i } det m
)AL (0) 0,45 () +
+{ i@ (i) @, g, styde} [[ase=0. (614
This equality is nothing but the system of generalized Ward identities

for the Yang-Mills theory. It can be written also in terms of variational
derivatives

{—f‘*’(D) u{L a,f(x) J+

+{ [ (i) M (2 )] v}z =0,
(6.15)

where the operators (M—l)b“ Y ) and V, (l 3 ]) are derived
from v (A4), (M™')** (xy,.%/) by the obvious substitution

a 1 8
A~ - - (6.16)

Applying the operator M~' to Z(J), we obtain the total Green function
of the fictitious particles in the presence of the classical source J:

My [Fa]z0=0"@ v, =
62 - -
—mN lSexp{—ii;—[ca VuC"]—gYM—i-
—]—cn—l—nc—i—;’u&(l]dx}ﬂdcdcd.%‘ . (6.17)

M=1=0
This function satisfies the equation

Xe7a ] 6 4 ac
AV (F37) 6" (v v, N=0"8(x—1)Z().  (6.18)
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From the generalized Ward identities (6.15) it is easy to obtain
relations between various Green functions. For instance, performing
variational differentiation of (6.15) with respect to J%(y) atJ = 0 and
differentiating the resulting equality with respect to y,, we get

i 0 [ e -
— f (D)ap,a\l [élﬁ(x)(sjz(y) ]]=0

——a{v(+ ). }';_0 = —8P(x—p). (6.19)

The variational derivative

82Z

(6.20)
8J4 (x) 873 (y)

1
i

I=0

is just the two-point Green function of the Yang-Mills field G4i(x, ).
The equality (6.19) shows that the longitudinal part of the complete
Green function,

Gy (x — y) = 0,0y 0 "°0p06Goo (x — 1), (6.21)
coincides with the free one,
a . k,k
G;I;v = D;,’;v = - babW S e~ ikx ?P_(u__\’_k_z_)_ dk. (6.22)

Thus, in complete analogy with electrodynamics, radiative cor-
rections to the longitudinal part of the Green function are absent. The
corresponding identities for three- and four-point functions look signi-
ficantly more complicated than in electrodynamics, since they include
in a nontrivial manner the Green functions of fictitious particles.

The consequence of the generalized Ward identities is the
existence of relations between counterterms, necessary for the removal
of divergences from the Green functions. For example, from the
identity (6.19) for the two-point Green function it follows that the
counterterm responsible for the renormalization of the longitudinal part
of the wave function is equal to zero. It can be shown that if the Green
functions satisfy the generalized Ward identities, then the counterterms
form a gauge-invariant structure. This may be done either by directly
analyzing the system (6.15) or by passing to analogous identities for
one-particle irreducible Green functions. By this it is proved that
renormalization does not violate the gauge invariance of the theory. It is
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simpler, however, to proceed the other way round—from the very
beginning to insert in the Lagrangian gauge-invariant counterterms of
the most general type, and then, using the generalized Ward identities,
to prove that all the Green functions in such a theory tend to a finite
limit when the intermediate regularization is removed. That is exactly
what we shall do in the next section.

Let us now obtain the generalized Ward identities for the case
when the Yang-Mills field interacts with scalar ¢ and spinor ¥ fields.

The generating functional for the Green functions in this case can
be written as

za, ¢ A w=N"exp{i [ss + ([ @ wr +
+ AL+ Ut Bt + it ax ) X
X A (58) [ 8 0ust, — W) dst dW dg dip dip. (6.23)

The gauge-invariant regularized action includes also terms describing
the interaction of spinor and scalar fields.

All the reasoning given above automatically applies to this case.
The only difference is that, in addition to the change of variables (6.4),
it is necessary to pass to new fields ¢, Yy

P—>9% Pp—>YPO. (6.24)

As a result, there appear in the exponent in the transformed functional
the additional terms

8, (T'9' + Vn* + 7" *) =£'8,9" + 8, 0" 4 7few*  (6.29)
and the generalized Ward identities take the form
fexp {1 [sa+ {[amz+'o! + ¥/ + a0/ +

o (7 (00) AR dix et M {1 1 (22) 8,48 0) +
849" (2)

+ S[Jﬁ @[ViM ™ (2, 5, O+ 11 (2) gy 0T
8, b* i 8bF(2)
+ ————g‘,:‘,’, ((yz)) x_on" @+ 7" @ % x_o] dz} =0.(6.26)
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In this form the generalized Ward identities are valid both in the
symmetric theory and in the theory with spontaneous symmetry
breaking. The difference is only in the explicit form of the gauge
transformation of the scalar fields ¢*. If the fields ¢ realize a repre-
sentation of the gauge group Q2 with the generators I,

8¢ = g (1°)*¢’u’ + O (u?), (6.27)

then the identity (6.26) can be written in the form (we omit the spinor
fields)

Lrmoe [f o ]+

873 (x)

+S[!;’l(y){v [l Y)]]G(u x, I, Z)} +

+ gt () (1 91—;;—1—’;&-# D1y ==0. (6.28)

!

In the case of spontaneously broken symmetry the transformation
(6.27) is modified in the following manner:

3p® =g (T)* ¢"u’ + g (T)* r’u’ + O (u?), (6.29)

where r’ is a constant vector, which may be considgred without loss of
generality to be directed along the axis labeled b: r® = ré®. Cor-
respondingly there appears in the identity (6.28) an additional term

re {2 @) 6, 5 1, v . (6.30)

For instance, for the model (1.3.25) in which the scalar fields form
the complex SU, doublet

e0=(50) =7 (va i i) 63D
the gauge transformation has the form
80 =—£ (B,
3B = — mu® — % e°B'u’ — =< ou’, (6.32)
gp

By,

'°I
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The generalized Ward identities appear as follows:

Lrea o]+ [ 4)-

~ LW T B0 (F Y Ty

8td (y

+o L 6§0(y) +md)|G* (g, x, 1, 9 } dy=0. (6.33)

To conclude this section we shall show that the generalized Ward
identities (6.14) express a certain additional symmetry, having no
classical analog, of the effective Lagrangian of the quantized Yang-
Mills field. [ By the effective Lagrangian we mean the expression in the
exponent in the formula (3.3.54) for the S-matrix. This expression
contains, besides the classical Yang-Mills Lagrangian, a gauge-fixing
term and the Lagrangian of fictitious fields.]

Let us write the generating functional for the Green functions in
the form of a path integral of exp{i X local action}, introducing
explicitly the fields of fictitious particles:

Z=N"! S exp { i S [— T FiFi + 55 GuAW + 2" MPc 4
+ & + 7° ] dx } H dstdede.  (6.34)

In this formula, besides the source for the Yang-Mills field, we have
introduced anticommuting sources 7, n for the fictitious fields. The
functional (6.34) corresponds to a definite choice of the gauge con-
dition [for simplicity we consider the case f(() = 1]. Therefore the
effective action in the exponent is not gauge-invariant. Nevertheless,
there exist transformations which affect simultaneously both the Yang-
Mills fields and the fictitious fields ¢, ¢ with respect to which the
effective Lagrangian is invariant. These transformations have the
following form:

A (x) > A (x) + [Vue (1), (6.35)

¢ (x) = ¢ (x) — = 1729 (x) ¢? (x) e, (6.36)

¢ (x) > &% (x) +—= [(LA“(x)]a (6.37)
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Here ¢ is a parameter independent of x and is an element of the
Grassman algebra:

e2=0; ectce=0; ec+ce=0; [e, s4,]=0. (6.38)

(We recall that the fictitious fields ¢, ¢ are also anticommuting
variables.) Such transformations, which mix up commuting and anti-
commuting quantities in a nontrivial manner, have become known as
supertransformations.

Let us verify that the effective Lagrangian figuring in the formula
(6.34) is invariant under the transformations (6.35) to (6.37). The
transformation (6.35) is a special case of the gauge transformation,
because it leaves the first term in the exponent of (6.34) invariant. It is
not difficult to check that the variation &(V ,c) is also equal to zero.
Indeed,

8 (Vo) = — %I“bd [0, (c®c®) — Abt*Tcec e —
— 12 (9,c” — 1T AlcT) ec?. (6.39)
The anticommutativity of the variables ¢/, ¢? leads to
tabdtbefcfcd =_;_ labdtdefcecf’ (640)

and therefore the right-hand side of (6.39) vanishes. Thus, the total
variation of the effective Lagrangian is equal to

8Ly =~ 0uAi0u (Vo) & — < QAIM™ e, (6.41)

Remembering the definition of the operator M, we see that this
expression is equal to zero.

The transformations (6.35) to (6.37) do not have any clear
geometrical meaning, and the invariance of the effective Lagrangian
with respect to these transformations is not connected with the con-
servation of any observable quantity. Nevertheless it leads to a number
of useful consequences and, in particular, can be used for the al-
ternative derivation of the generalized Ward identities.

For this purpose, in the integral (6.34) we shall make the change of
integration variables (6.35) to (6.37). The Jacobian of this transfor-



4.6 Generalized Ward identities 163

mation, which can be symbolically written as

8,,0%%, ) Vile, 0
J=det 0, 80—, 0 | (6.42)
8¢ >

b % edy, 0, 39

is obviously equal to unity. Therefore, as a result of the substitution
(6.35) to (6.37) only the terms with sources are changed. Writing out
their variation explicitly and equating the derivative dZ/de to zero, we
obtain the relation

0= S exp{i S (2, + 1542 + e°0° + 7%°] dx} X
X {8 ) Ve @) — 5 045 ()" (1) —
— 5 A% @) 1% (4) ¢ () } dy [[dstdcde, (6.43)

from which it is easy to derive the generalized Ward identity (6.14).
Differentiating the equality (6.43) with respect to  and assuming 7, 1
= 0, we have

0= exp{s (L2, + aglax }{ - Lauaz o+

+ S &%) 15 (2) [Vuc )1 dz } [[dstdcde.  (6.44)

Performing integration over ¢, ¢ by means of the formula (6.17), we
obtain exactly the identity (6.14). In an analogous way it is possible to
obtain the generalized Ward identities for the case when the Yang-
Mills field interacts with the fields of matter.

Until now we have considered only covariant a-gauges, which are
usually dealt with in practical calculations. However, all the reasoning
automatically applies to the more general case when the term fixing the
gauge has the following form:

By =exp{4 [ @ (4, v ax}, (6.45)

where ®(.27) is a functional of .27(x) which in principle can involve, in
addition to terms linear in ., terms of higher order as well. In this case,
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in accordance with the general quantization procedure described in the
third chapter, the operator M figuring in the generating functional for
the Green functions is given by the formula (1.1.26):

(8D (st %)
M¢a_S——6 Gy Vea () dy. (6.46)

To obtain the generalized Ward identities for this case it is sufficient, in
all the computations given at the beginning of the present section, to
substitute

0, A, — D (),

M — Mo. (6.47)

As a result, instead of (6.14) we obtain
Sexp{i V{ sa 4[5 0 (90 + 242 dx } det Mo X

x {0 p+ {12 @ (M) @ g, a2} ] ast =0,
: (6.48)

4.7. THE STRUCTURE OF THE RENORMALIZED ACTION

Let us analyze the structure of the primitively divergent diagrams in the
Yang—Mills theory. We shall start with the Yang—Mills field in vacuum.
In the a-gauge the effective Lagrangian has the form

& =5t { T 10u#, — 0u58) + g [ot, H,]P —
— 55 (F(D) 0,8,V + ¢ Oc — gedy [, e} (1.1)

The diagram technique involves the following elements:

1. Vector lines dpv, lines of fictitious ¢ particles ¢c. To these lines
there correspond the free Green functions D, (p) and D(p), behaving
asymptotically as p™% as p — .

2. Vertices with three outgoing vector lines and one derivative.

3. Vertices with four vector lines and without derivatives.

4. Vertices with a single vector and two fictitious lines and one
derivative.
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In accordance with the general formula derived in Section 4.2, the
index of a diagram containing n, three-legged vector vertices, n, four-
legged vertices, n, vertices with fictitious particles participating, L;,
internal vector lines and L¢, internal fictitious lines is equal to

®=2Lin 4+ 3L{y — 4 (s — 1) — 3 (13 + n,). (7.2)

Taking advantage of the fact that the number of internal lines (L;,, Lf,)
is related to the number of external lines (L.,) by

4'14'|'3'13'|"1¢:_Lex . (73)
) ’

c
16 — 2n, — Loy
In=—5—",

Lin=

we express the diagram index in terms of the number of external lines
O=14 — Lex — L¢x. (71.4)

From this formula it follows that the perturbation-theory series for
the Yang—Mills field in the a-gauge contains a finite number of types of
primitively divergent diagrams. These diagrams are symbolically pre-
sented in Fig. 9. [Formally there exist also a logarithmically divergent
diagram with two external vectors and two fictitious lines, and a di-
vergent diagram with four fictitious lines. However, as is seen from the
formula (7.1), the derivative in one of the vertices can be transposed to

o 0L X
o A,

Fig. 9. Types of divergent diagrams in the Yang—Mills theory.
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the external c-line by integrating by parts. Therefore in reality the
corresponding diagrams converge.]

The self-energy diagrams in (a) and (b) have an index 2. The index
of the diagrams in (c¢) and (d) is 1, and of the diagram in (e), 0. For the
same reasons as above, the actual index of diagrams having external
c-lines is reduced by 1. Besides this, for reasons of Lorentz invariance
all diagrams with indices equal to one in reality diverge only log-
arithmically.

In accordance with the general procedure for the removal of these
divergences it is necessary to subtract from the corresponding vertex
functions several of the leading terms of the Taylor series in the
external momenta. As the expansion center, a point is usually chosen at
which the external momenta are on the mass shell, since such a choice
provides for the proper normalization of one-particle states. However,
in the case when the system under consideration involves particles of
zero mass, the vertex functions on the mass shell may involve addi-
tional singularities due to the divergence of the corresponding integrals
at the origin of the coordinate system (the infrared catastrophe).
Therefore we shall perform subtractions at the points for which the
values of all the external momenta are in the Euclidean region. For a
vertex with n external momenta p;, for example, such points are

a2

pi=—a% pip=T7- (7.3)

At these points all the vertex functions are real and are free from
infrared singularities.

We shall now write out the most general expressions for the
subtracted terms compatible with the conditions of relativistic in-
variance and of Bose symmetry. The proper vertex functions corre-
sponding to the diagrams presented in Figure 9 have the following
structure:

Tuue (p) = Tfio (p) = 6% {b1guv + bopupy +
+ b3(p’guy — pupv )} + .oy
g (D) =T%(p) =800+ ...,

Te=Tiv (p, k, ) =ie"™"bs{grv (p — k)o +
+ gk —gh+ @, @—n)}+ ...,

Taee=Ty""(p b, ) =5 ™" b (k=) + ...,

¢
<
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I’,,{’ = Fli{vrgg (p: k’ q, r) =
= P {b;e"'e5"" g, @+ 0070 guro} + - .- (1.6)

(Here the vertex functions for the group SU, have been written down.
In this case the tensor structure in the charge indices is limited to the
tensors £ and 6°. In the general case there may be present additional
linearly independent structures, such as, for example, terms propor-
tional to the symmetric tensor d* in the case of the group SU;. The
proof of the renormalizability given below remains valid in this case
too.)

In the last formula P is the symmetrization operator of the pairs of
indices (i, w), (1, v), (m, p), (n, X). The cofficients b; depend on the
regularization parameters A, u and on the positions of the subtraction
points a;; -+ * denotes the subsequent terms of the Taylor expansion,
which tend to a finite limit when the regularization is removed. The
subtraction of the polynomials (7.6) is equivalent to the insertion in the
effective Lagrangian of the following counterterms:

AZ =1ir { D185 4 b2 (0u8)” + 25 (Bust — Gusto)? +
- 2b4g Oc + bs (av'%u - au#v) ['9¢u’ '54\;] +
+ beedy [y O+ [, ] [#y, St} +
+45 (e (shuh ). (1)

The number of types of counterterms needed for the removal of
divergences is finite, and therefore the theory is renormalizable. How-
ever, the counterterm part of the action (7.7) contains significantly
more parameters than the original Lagrangian. For arbitrary par-
ameters b, the renormalized theory is not gauge-invariant and does not
satisfy the relativity principle, and that leads to the loss of the
equivalence of various gauges and as a consequence to the violation of
unitarity.

When the intermediate regularization is fixed, then the values of
the parameters b; depend on the choice of the subtraction points
a;. We shall show that this arbitrariness allows one to choose the
parameters b, so that the renormalized theory becomes gauge-invariant.

Let us ascertain what constraints are imposed by the relativity
principle on the form of the renormalized effective Lagrangian. First of
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all note that the gauge-invariance of the Yang—Mills Lagrangian is not
violated if it is multiplied by a constant. In addition we can treat
arbitrarily the parameter g, which plays the part of the charge. In other
words, the most general expression for the gauge-invariant Lagrangian
of the Yang-Mills field has the form

@ =2 tr {(Oust — Oust) + g2zt [ty S (18)

The role of the parameter of the gauge transformation for this
Lagrangian is played by the constant 2:

§=ygaz . (1.9)
The same parameter must be involved in the definition of the covariant
derivative to provide for the self-consistency of the theory. Specifically,
in the operator M, which has been defined by the formula

M=0,Y,=0,0, —glst,. ), (7.10)

the constant 2 must be substituted for g. Writing det M(2) in the form of
an integral over the fields of fictitious particles,

det M (§) = const S exp{ _2i Ir S 5.00, (0uc — 2135 'g X
Xlet,, <)) dx } [[dcde, (1.11)

where
57'5 =252, (1.12)
and we have again taken the opportunity to multiply the Lagrangian as

a whole by an arbitrary constant, we obtain the most general expression
for the admissible effective Lagrangian:

1 1 —
L= tr { T 2[00ty — 0usty) + 2125 g [t 58T —
— o (1(D) 0u) — 2 (3 Oc — 2137 ged [ty ). (1.13)

The constants z,, z,, %,, %, are related by (7.12). The familiar
condition z, = z, is not necessary and, generally speaking, does not
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hold: the Lagrangian (7.13) has the same structure as the nonre-
normalized Lagrangian, differing from the latter only by the multi-
plicative renormalization of the fields .«Z,, ¢, ¢ of the charge g and of the
gauge parameter a:
Sty —>al'st, ¢—E'c, c— 3, (7.14)
g—212 g, a—>zu.

Unlike the general expression (7.7), this Lagrangian involves only three
independent counterterms, and at first sight it is not obvious that with
their aid it is possible to remove all the divergences.

By introducing an invariant intermediate regularization it is pos-
sible to construct a generating functional for the Green functions Z z(J)
corresponding to the Lagrangian (7.13). We shall assume that the
regularization is performed, using the method of higher covariant
derivatives decribed in Section 4.3. Since in all further reasoning only
the invariance of the regularized action will be used, we shall not write
the regularizing terms explicitly; they are described, for example, by the
formula (4.34).

The role of the parameter of the gauge transformation for the
Lagrangian (7.13) is played by the constant2 = z,z,'g. Therefore, the
generalized Ward identitites which are satisfied by the functional Z ¢(J)
differ from the identities (6.15) by the substitution of g for g in the
operators M~' and V

1 2 xf 1 62R

sroaf{ias

b bdyy  mped 18
+{SJu(lJ)[5 o — gt ,.Nﬁ(y)]x

X M (457 ) dy } Ze=0,  (1.15)

where the sign ~ means that the constant g involved in the definition of
the operator M " is replaced by 2.

In this formula it is convenient to pass to the renormalized Green
functions of the fictitious particles, defined by the equality

6 @, x, N=N"{ e Wexp i {[26°(5) 6" (5) —
— 5™ gc! (s) 0, [ Ak (s) " ()] + 2R (s) +
+ Aiiilds) [[ dst dede.  (7.16)
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For this, note that

My zr=N"" {2 () " (s exp {i ( [2* (5) e () —
— 27 '51g1" % (s) 0, [ AL (s) ¢ (5)] + KM () +
+ A% ds } |[ dst dcde =268y, x, 1. (1.17)

x

The last relation is obtained from (7.16) by the substitution of variables

_‘,2 -

c—>3 e, c—35"c. (7.18)

Representing the source J, on the right-hand side of the identity

(7.17) in the formJ, = J' + 0,00 7'0,J,, and taking advantage of the
fact that

(v, (@) M) =878 (x — ), (7.19)

we rewrite these relations in the form

roa{ s =

812 (x)

={§Do<x—y)a.lls<y>dy}zle+

+ S 1t (y) g2t + 5 ]cé(y) G&* (9, x, J) dy.
(7.20)

We shall show that for a suitable choice of the constants z,, Z,, Z,, the
finiteness of all the Green functions follows from the identity (7.20).
The proof will be by induction. Assuming all the diagrams up to and
including the nth order to be finite, we shall show that the functional F
on the right-hand-side of the equation (7.20) is finite to the ordern + 1.
Hence it follows that the functional

0;{ ! "’Z_R} (1.21)

T8I (x)

is also finite to order n + 1. This, as we shall see, means that all the
Green functions (except, maybe, the two-point functions of the Yang—
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Mills field T,, and of the fictitious particles I',,) are finite. The
divergences of these functions are removed by using the renormal-
ization constants z, and Z,, the choice of which remains at our disposal.

The proof is particularly simple in the case of gauges for
which the longitudinal part of the Green function of the Yang-Mills
field decreases rapidly at large momenta, that is, when the function
f(k?) involved in the definition of the generalized a-gauge behaves
asymptotically as k** for n > 1. [This, of course, includes also the
Lorentz gauge itself (@ = 0) when the longitudinal part of D, is equal
to zero.]

The proof for an arbitrary gauge does not involve any notions that
are new in principle, but it is more cumbersome. So, not to distract the
reader with technical details, we shall first consider the case

[(R) gk, n =1,

and come back to the discussion of more general gauges later, when we
are investigating the dependence of the Green functions on the gauge.

In the lowest order of g? only the two-point functions Iy, and I,.
diverge. The proper vertex function I, = I,J"(k) in second order i 1s
connected with the Green function G,2°(k) by the relation

% (k) = Dt (k) Tun (k) D (k) 4 Daj (k). (7.22)
From the identity (7.20) it follows that
k2 k
CUB) pog 25 () — 2o T3 (#) X
Xy +0°=0% (1.23)

that is, the function I,3’(k) is transverse:
I8 (k) = 8 (Bguy — kuky) 11 (£°). (7.24)

Therefore the constants b, and b, in the Lagrangian (7.7) are equal to
zero, and for the removal of the divergence one counterterm z{ is
sufficient. In an analogous way the counterterm z{” provides for the
finiteness of the Green function of the fictitious particles.

We shall now prove the finiteness of the third-order vertex
functions. To the vertex function I, there correspond the strongly
connected diagrams presented in Figure 10. As was shown above, the
index of these diagrams equals zero, which means they are formally
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Fig. 10. Third-order corrections to the vertex function I, 4.

logarithmically divergent. It is not difficult to verify, however, that in
the gauges for which

FOR) S kP =1,

the divergence is absent. Indeed, the analytical expression corre-
sponding to the diagrams in Figure 10, represents in the momentum
representation the sum of terms of the type

~{ D (x — £) 93 {D (1 — 21) 65 [Dew (21 — 2) D (21 — )] X
X 0f! [Dwa. (x1 — 91) D (g1 — y)1} 4%, 4y, dz,.

Integrating by parts, it is easy to transform this expression so that the
derivatives at the vertices x, and y, act either on the vector Green
function, as a result of which only its rapidly decreasing longitudinal
part gives a contribution to the integral, or on the external line.
Therefore the true index of divergence is reduced, and convergent
integrals correspond to the diagrams in Figure 10. Correspondingly, in
the gauges under consideration the constant z, is finite.
For the Green function G°%(x, y, z) the identity (7.20) gives

uvp

avaa

<+ (D)OiiGﬁvp (v, 9, 2) = g&t"* (gwu —

—1_ R (y’ x»")
() 815 W) 815 (2) |, _,

)X

+ (b<>c, y<«>z, ve>p). (7.25)

To the functions
8'GE* (y, x, J)
3JE (y) 8J7 (2) 7m0
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there correspond the diagrams in Fig. 11. The diagrams in (b) and (c)
are weakly connected, and the convergence of the corresponding
integrals follows from the finiteness of the second-order two-point
Green functions G4, and G*.

The diagram in (a) has a structure analogous to the structure of the
diagram describing the transition of two fictitious particles into one
vector particle (see Figure 10). It differs from the latter only in the form
of the extreme left-hand vertex, denoted in the figure by a small cross.
Only one vector and one fictitious line leave this vertex, while
derivatives are absent. Formally the diagram in Figure 11(a) has a zero
index, but for the same reasons as above the actual index is smaller by
unity, and the divergence is absent.

Thus, the right-hand side of the equality (7.25) is finite, and
consequently the function d;G4%(x, y, z) is also finite in the third order
ofg -+ - . Therefore the divergence of the upper vertex function I 22¢ is
also finite:

(k + p), Tiive (k, p) < oo. (7.26)

, : . 8GH (x5 )
Fig. 11. Diagrams corresponding to the function ————
8JG ()84 (2)

/=1
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The divergent part of ['%%(k, p) can only be a polynomial of order

vp
not higher than one. The corfdition (7.26) signifies that this polynomial
is identically equal to zero, and consequently, the function Fﬁﬁ;(k, D) is
finite in the third order of g. For the removal of the divergence from the
vertex function I’ we have not had to introduce the independent
renormalization constant z,. This function turns out to be finite
automatically if z, = 2,2, 'z,.

The proof of the finiteness of the vertex functions of arbitrary order
is absolutely analogous.

Let us consider the functional F in the right-hand side of Equation
(7.20). Its connected part is represented by the diagrams in Figure 12.
Let all the diagrams involved in the expansion of this functional be
finite in all orders up to n. To prove the finiteness of the functional F in
the (n + 1)th order, it is sufficient to consider the diagrams in Figure 12
in which insertions in the external lines are absent, all the subgraphs
being assumed to be finite.

The diagrams in Figure 12 are analogous to the diagrams repre-
senting Green functions G(x, y,J) with two external fictitious lines and
an arbitrary number of external vector lines. They differ only in the
form of the vertex denoted by a small cross. One vector and one
fictitious line leave this vertex, while derivatives are absent.

Therefore, the index of the diagrams in Figure 12 is the same as
that of the diagrams corresponding to G(x, y,J). The diagram with two
external lines has an index equal to one. For reasons of Lorentz
invariance the corresponding analytical expression has the form

J 0 —ndy= {1 a0y —x dy=0.

vz

BT A0 e

N Yty Fox S

Fig. 12. ® ~ denotes an external classical source J,..
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The diagram with three external lines has a zero index and in
principle diverges logarithmically. The remaining diagrams all have
negative indices. Repeating word for word the reasoning given above
for the third-order diagrams, we come to the conclusion that log-
arithmic divergences in the diagrams in Figure 12 and also in the
diagrams responsible for the vertex function I';,., are indeed absent.

Thus the assumption that the integrals corresponding to diagrams
of the n-th order are convergent leads to the finiteness of the functional
F in all orders up to n + 1 inclusively. This means that all the integrals
involved in the expansion of the functional in the left-hand side of the
equation (7.20) also converge, and thus all the Green functions are
finite:

ax,{ 1 ) 1 o} }Z .
Wi T a T aam . (PR
L 81yt (x1) ‘ 8,7 (%)

=0,Gy (% e 1) (727)

The Fourier transforms of the function Gﬁll Z: are related to the

vertex functions I'2! . % by the relation
M Mm y

“m(k : m)_

_au L) . Garm (k) Tl m (By oo k). (1.28)

m

Nl

All the two-point functions G ‘ '_ are reversible and are of order

< nin g. Therefore from the ﬁmteness of the functions (7.27) it follows
that

kuTul L am (ke k) =0 (ke ... k) <oco. (7.29)

Generally speaking, both strongly and weakly connected diagrams

a

correspond to the vertex functions T, ..., *". To weakly connected

diagrams there correspond coefficient functions representable (in the
momentum representation) in the form of a product of coefficient
functions of a lower order, which are assumed to be finite. Therefore,
the equality (7.29) can be considered to be correct for the proper vertex
functions of the order n + 1.
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If the proper vertex function has an index O or 1, then its divergent
part can only be a polynomial of order not higher than one. The
condition (7.29) signifies that this polynomial is identically equal to

zero, and consequently, all the functions T',, .. "(k; - * - k,,) are finite.

The only possible exceptions are the two-point Green functions of the
Yang-Mills field and of the field of the fictitious c-particles. The latter
is not even involved in the expansion (7.27) and therefore is not subject
to any limitations.

With regard to the two-point Green function of the Yang-Mills
fields, since the diagram corresponding to it has an index 2, the

divergent part of I Z‘lffz(k) can be a second-order polynomial. The con-

dition (7.29) is insufficient for turning a second-order polynomial into
zero. It does not impose any restrictions on its transverse part

const (g,vk% — kyky). (7.30)

We have, however, at our disposal two more arbitrary counter-
terms of order n + 1: z{"*Y, 2{"*D), These counterterms are sufficient for
the removal of divergences from the two-point Green functions. Thus,
all the diagrams of the (n+1)th order are finite. The induction has come
to an end.

Now let the Yang—Mills field interact also with scalar and spinor
fields. The corresponding Lagrangians are given by the formulas
(1.3.1, 11). The diagram technique, besides the elements already
discussed, contains now scalar and spinor lines, to which there corre-
spond the Green functions D(p) and S(p) with the asymptotic behavior
p~*andp~!, respectively, vertices with two spinor lines and one vector
line without derivatives, vertices with two scalar lines and one vector
line with one derivative, and vertices with two vector and two scalar
lines without derivatives. The index of the diagram with L%, external
vector, L, fictitious, L%, scalar, and LY, spinor external lines is equal to

0=14—L&— L& — L% — 5 L% (7.31)

Besides the diagrams already mentioned, the diagrams presented in
Figure 13 also have a nonnegative index. The self-energy diagram for
the scalar field in (c) diverges quadratically, the diagrams in (a), (d)
linearly, and the remaining diagrams logarithmically.

The corresponding proper vertex functions have the form [again
for definiteness we write the formulas for the case of the group SU(2)]
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Pap = (d + V2, )8 + ..,
Top=(ds+ dip?) 8"+ ...,
Tgpa = A5V, 8%+ ...,
Toon = idee™ (k — g + ...,
F(pquA — d7gu.v (6abacd _ éacabd) +
+ dag,y (0708°% + 8%°6%) 4 ..,
Tgo = dg (6°8°% 4 898" + 8%98%) 4 ..., (7.32)

where -+ stands for the terms tending to a definite limit when the
regularization is removed. As in the case of the Yang—Mills field in
vacuum, the number of possible counterterms is significantly greater
than the number of parameters in the nonrenormalized Lagrangians.

The most general expression for the gauge-invariant renormalized
Lagrangian is constructed as before, and has the form

Z* =Ly + 2,0V, (0, — 2552, @A (7)) v —
— 23 (m+ d) Bb + 5 25, (0,0 — 2,2 AT (T) 0) —
— 2 et 2 @?,  (1.33)

i
wla
p ( ) gk ( ) g £ A
a b ] ¢ a O’ )
‘upa al b) )
e oy
e -
2 L
” : 7
9 % Moo N
g )

Figure 13. Additional divergent diagrams in the theory of the Yang—Mills
field interacting with spinor and scalar fields. The solid line denotes the
propagator of a spinor particle; the dash-dotted line, of a scalar particle.
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where £ %, is the renormalized Lagrangian of the Yang—Mills field in
vacuum (7.13).
Gauge invariance requires that the constants z3,z,,g and
_l . . . - . -
z,,21,€ and involved in the covariant derivatives of the spinor and
scalar fields, coincide with the corresponding constant g = z;'z,g
which figures in the Lagrangian of the Yang-Mills field:

-1 — »—I — »—I1
23921 = 2521, =25 2. (7.34)

As before, the conditions z,, = z,,, z,, = z,, are not necessary.
The gauge invariance does not impose any restrictions on the counter-
terms d and f, renormalizing the masses of the fields and the counter-
term zA(¢”)>. We shall choose the constants z,, and z,, in accordance
with the condition of finiteness of the two-point Green functions of the
spinor and scalar fields.

If the condition (7.34) is fulfilled, then the Green functions
generated by the Lagrangian (7.33) satisfy the generalized Ward
identities (6.26) with the obvious substitution g — 2. The proof of the
finiteness of the Green function repeats word for word the reasoning
given above. The only difference is that the functional F on the right-
hand side of (7.20) contains additional terms

d
8613

1
Z\g S 2 (y) (1)’ [T W-I dy+ ..., (7.35)
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where - - - denotes analogous terms for the spinor fields. The corre-
sponding diagrams are presented in Figure 14. The finiteness of these
diagrams is demonstrated exactly in the same manner as the finiteness
of the diagrams in Figure 12.

All the remaining reasoning is entirely identical to the analogous
reasoning for the Yang-M ills field in vacuum. Thus, in order to remove
all the ultraviolet divergences the gauge-invariant counterterms are
sufficient in this case also.

Nor do any new features appear in the theory with spontaneously
broken symmetry. The above-described scheme for proving the re-
normalizability remains unchanged. Consider, for example, the model
(1.3.25). The most general form of an admissible renormalized La-
grangian can be obtained in the following manner. In accordance with
the procedure described above, admissible counterterms

, . 1T 2
& = z2q,| (aucp+ —iz 2lg s Aucp+) l —
— 20 (ot — 2 + op?)* 4 Z§,,. (7.36)

are inserted in the Lagrangian (1.3.25). The constants z,,, z,, satisfy
the conditions (7.34). Passing to the shifted fields B?, o defined by the
formula (6.31), we obtain

Powis 1
1 m2 zm2 g2
+5 2990,00,0 — 72 02 — —m-;— 5 du2 (B2 + o?) +

1

2
—%56 b2+ 210 5 A2 (60,8° — B0u0 — e*°B'6,B°) +
+ 23 25 [m‘g oA2 + —8— (6® + B?) Au] —
2 2
_ zgmj . ” 2g°m 15 oo 737
o 00 B = (o B (1.3)

The renormalized Yang—Mills Lagrangian (7.13), involving also inter-
action with fictitious particles, remains unchanged, and we shall not
write it out.

In passing to the formula (7.37) we performed a shift of the fields ¢
by a quantity equal to the vacuum expectation value of the field ¢, not
allowing for radiative corrections. Therefore in the Lagrangian (7.37)
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there are present counterterms linear in the field o, which compensate
the divergences in the “tadpole”-type diagrams (Figure 15), and also
the counterterm renormalizing the masses of the Goldstone fields B*.
These counterterms are neccesary in order to provide for the equilib-
rium of the ground state when taking the radiative corrections into
account.

The Lagrangian (7.36) is invariant with respect to the gauge
transformations (6.32) with the substitution

m—fm, g—>§ g=2z"g m=%2%2"'m. (7.38)
The generalized Ward identities are modified in the same way as in the
symmetric case
1 8z

l a
T @[] = VP —nasiwan ze+

Pr o\ s o bed ]l 8 218 gbd 18
+S{(Ju) W 2™ -3y T S BTG

g [Leetl O gl 8
§B(y)21[2e [6§g(y)+ 2 i (sg,,(y)_l—ml ] %

X G4e (, &5 & ¥, X)dy (7.39)

(we recall that in the gauges under consideration the constant Z, is
finite). The proof of the renormalizability repeats practically word for
word the corresponding reasoning for the symmetric case. The only
technical complication consists in that due to the mixing of the fields
A, B in the generalized gauge, the two-point Green functions are
represented by matrices (2 X 2).

The last comment concerns the normalization of the two-point
Green functions. Since in this case we deal with massive particles, the
subtractions may be performed on the mass shell. Therefore we shall
assume the counterterms to be chosen so that the poles of the total two-
point Green function of the o-particles and of the transverse part of the
Green function of the Yang—Mills field coincide with the poles of the
corresponding free functions. We cannot, however, in general provide
simultaneously for the residues at the corresponding poles to be equal
to unity. As is seen from the formula (7.38), the counterterms renormal-
izing the masses and the wave functions are not independent. Having
defined the position of the pole of the Green function, we are not free to
handle the value of the residue at this pole arbitrarily. Therefore, to
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>

Fig. 15. Diagrams of the “tadpole” type in the Yang—Mills theory with
spontaneously broken symmetry.

provide for the correct normalization of the single-particle states it is
necessary to perform an additional finite renormalization.

4.8. THE RENORMALIZED S-MATRIX

We have shown that the renormalization procedure can be carried out
without violating the gauge invariance of the theory. We shall now
show that the renormalized theory obeys the relativity principle,
meaning that the probabilities of physical processes do not depend on
the actual choice of the gauge condition. Thus the unitarity of the
renormalized S-matrix will be proved.

In the present section we shall consider models with spontaneously
broken symmetry, in which all physical particles have nonzero masses.
Formally all the reasoning may be applied to the symmetric theory
also, but in this case, as has already been pointed out, the matrix
elements on the mass shell contain additional infrared singularities.
Therefore, in the framework of perturbation theory, the S-matrix in the
symmetric theory, strictly speaking, does not exist.

So let us consider the renormalized generating functional for the
Green functions, which can be written as

Z(J, L= N7} S exp{ i S (2. + AL+ ;ao] dx} X (8.1)
X A ()] 6(0,9¢2,) dst do dR.

Here &  is the renormalized gauge-invariant Lagrangian of the Yang—
Mills field interacting with the fields of matter. [For definiteness we
consider the Lagrangian (7.36)]. We shall assume the source J, to be
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transverse:

dp,J:,:O. (82)

The matrix elements of the S-matrix are expressed in terms of the
variational derivatives Z by means of reduction formulas

81‘... i, Iy ... ’m(k; eve k;, p: p;; k] .
ntm It
ke Py )V I W E =

=k —md) ... (k) — m?) (p’ — m) ...
(p, —m) (R —m) ... (K —m})(p}—m3) ...
(pz—m‘g’)e(k 10) -+ 8 (ko) B (—Fyg) - B(—Fye)8(mly) - -
8 (Pio) 8 (= Pro) « - 8(— Pg) X
Xu;‘l...u;';G iy vy v (BL o P X

/y
X o+ m 'ﬂQ-p Pmm; k2mkt?=m?, (8.3)
Here k, k' denote the momenta of the vector particles, and p, p

those of the scalar particles. The constants V" and W are renormalizing
factors:

bab( Suv — kukv) V

k,k 827
= (k2 — m? —_ _L‘__l) S ikx
(k* — m?) (guv %) e ——blﬁ(x) O |, - dx, (8.4)
= 2 __ m2 ipx _____6_22_—_ {
Wp2-m2 (p m2) S e 6;0 (x) 6;0 (O) I t=0 dx. (8‘5)
2

If the two-point Green function is normalized on the mass shell to
unity,

(P—m)G(p)=1, p=m (8.6)

then these factors are absent, and we come back to the formula
(I11.3.64). The matrix elements (8.3), calculated in the Lorentz gauge,
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tend to a definite limit when the intermediate regularization is removed.
Let us demonstrate that in reality the values of the matrix elements
(8.3) are independent of the choice of the gauge condition.

Let us pass in the expression (8.1) for the generating functional
Z(J, ¢ o) from the Lorentz gauge to the unitary gauge

B?=0. (8.7)

The invariance of the renormalized Lagrangian & , allows us to use
for this the same method as was used in Chapter 2.

By introducing the gauge-invariant functional A’(o, B, g) defined
by the equality

Ao, B, 8){8(#) [ do=1, (8.8)
where ’
B =B — mu— LB, u]— & ou+ 0w, (8.9)
we can rewrite the functional Z(J, { ) in the form
z(1,0)=N"fexp{i{[Z0+ f2a34,0)ax } A @ %
X []80ust) A (8, &, 0)8(#°) dodst dodB.  (8.10)

Passing to new variables

1 -]

‘52¢u—>.9¢8_l, B—>H  g—o° o '>o (8.11)

’

and integrating over w, we obtain, in complete analogy with the results
of Chapter 2,

20, o =n"{exp{i ([, 412 (s£)" + 1,0 ax} X
X A (o, B, g)H 8(B)dst dod®B, (8.12)
where

b= Sty + 05t = o4, + Ouu — F[Ht, u]+ 0 (),
o‘“=0+60=0—§(%u)+0(u2), (8.13)
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and the function u is defined by the equation
OpSbu= 0 u—Gou [y, ul+ opsty+ ... =U. (8.14)
The value of the functional A’(¢, %, £) on the surface =0 is equal to

A’ (o, B, §)é‘= det ﬁ11+-§—-0-2(i = const det | m, +g"(")
-0

(8.15)

The functional (8.12) differs from the generating functional for the
Green functions in the unitary gauge only in the form of the terms with
sources. We shall now show that if it is substituted in the reduction
formula (8.3), the this difference vanishes; that means that the re-
normalized matrix elements remain unchanged for the substitution

1(A) > Jasty,  1,0° L0 (8.16)

The variational derivatives of the functional (8.12) are expressed
in terms of Green functions of the form

(_]_)m+q 6(m+q)Z
i BIL (1) - 8I5™ (x,) 8L (3)) - 82 (v,,)

J. §=0
= exp{i{12a1ax} 270, 2 0 (s82)" ()
(588) ™ (2) 0 (1)) - . 6 (1) [[ () dt do d®, (8.17)

where .2/, g are defined by the formulas (8.13). Since the sources J,
are considered to be transverse, the linear term d,u does not give any
contribution and the perturbation-theory expansion of .27, and do start
with terms quadratic in the fields.

The diagrams presented in Figure 16 correspond to the Green
functions (8.17). Diagrams of the types in (a) and (b) contain poles in
all variables p; k; Diagrams of the type in (c) are one-particle
irreducible at least in one of the momenta p;, k; (The diagram
presented in the figure is one-particle irreducible in the momentum p,.
This means that it is not possible to split it into two parts, connected
only by one line, along which the momentum p, propagates.)
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&y

Fig. 16.

From the investigation of the analytical properties of Feynman
diagrams it is known that one-particle irreducible diagrams have no
pole singularities in the corresponding variables. Therefore if the
coefficient functions corresponding to the diagram in (c) are multiplied
by the product:

II (k2 —m?) I][ (P2 — m3) (8.18)

i

and ki = m}, p?= m} is assumed, then this expression vanishes.
Diagrams of the (b) type are obtained from (a)-type diagrams by
means of insertions in the external lines of the blocks denoted in Figure
16 as IT.,, IT,. On the mass shell this is equivalent to multiplying the
corresponding Green functions by constants equal to the values of the
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functions Il (k%) and I1,(p?) at the points k&> = m?3, p> = m3. The
values of the Green functions with m external vector and g external
scalar lines on the mass shell when one gauge is changed to another are
changed as follows:

m q
)
IT (=) T (=) G200 o s o )=

q
= (1 + Ly (1411, (m))" 1T (8 — ) IT (03— mt) X
XG0 om(kyy ooy By Py ooy B) |k2_m%. (8.19)

p‘;’-mg
Here G is the Green function in the unitary gauge, and G in the
Lorentz gauge. Obviously, a quite analogous formula relates the Green
functions in other gauges also.

For the two-point Green function the corresponding transfor-
mation is presented graphically in Figure 17. The values of the two-
point Green functions on the mass shell in various gauges are con-
nected by the relation

( m2) G(L) ab (k) (1 + H m2))2(k2_m2) G‘“) ab (k),

(9 — m2) G (p) (1 + 11, (m3))? (p* — m2) G (p). (8.20)

Going back to the formula (8.3), we see that passing to the unitary
gauge signifies that the Fourier transforms of the Green functions with
m vector and g scalar external lines are multiplied by

(14 L (m))" (14 1L, ()", (8:21)

but simultaneously the normalizing constants ¥ and W are multiplied
by (1 + IT_(m?))* and (1 + I14(m?))? respectively. As a result, the
expression for the renormalized matrix element remains unchanged.

From this reasoning, which is actually the analog of the Borhers
theorem in the axiomatic quantum theory, it follows that the re-
normalized S-matrix is independent of the concrete choice of the gauge
condition, and consequently the renormalized theory satisfies the
relativity principle.
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Fig. 17.

In the gauge # = O the renormalized Lagrangian has the form

Lr=Zu+
2 -1 2 2\ 2 2
"|‘{ ZigPog 2A2+—z 6060—(m2+6m2)0 _26m2m10+
2071 2 g
—1 2 2
""18 219229 P 28Mny zg2m2
0% '0A2 + ———- g’c*A?% — o’ — o*¢.
+5 2 By + 8 g ” 4m, 32mf

All nonphysical particles (the Goldstone bosons, the fictitious c-
particles, the longitudinal quanta of the vector field) are absent, and the
unitarity of the scattering matrix is obvious. Due to the independence of
the S-matrix of the gauge, the matrix elements on the mass shell tend to
a definite limit when the regularization is removed. Note that this is not
true of the Green functions of the mass shell, generated by the
Lagrangian (8.22). The free Green function of the vector field corre-
sponding to the Lagrangian (8.22) has the form

D — —1 gy, — kkym®
W emyt P —md

, (8.23)

and as k — o tends to a constant. Calculating the divergence index of
the diagram containing n, trident vector vertices, n, four-legged ver-
tices, and L., external vector lines, we find

=4 + 4’14 + 2’13 _ QLQX; (8.24)

with the increase of n; the number of types of divergent diagrams
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increases infinitely, that is, off the mass shell the theory is non-
renormalizable. Nevertheless for the removal of the divergences from
the matrix elements on the mass shell a finite number of the counter-
terms written out in the formula (8.22) are sufficient. Gauge-invariance
leads to the physical equivalence between the explicitly renormalizable
and explicitly unitary gauges, due to which the renormalized S-matrix
has both these properties. .

Obviously, these conclusions do not depend on the concrete model
(8.22); they all apply equally to the model (1.3.13) and also to the
models involving additional gauge-invariant interaction of fermions.
Only the gauge invariance of the renormalized Lagrangian is essential.

To conclude this section we shall go back to the question of the
proof of the finiteness of the Green functions in the generalized
renormalizable gauge. Until now we have considered either the Lorentz
gauge, or gauges in which the longitudinal part of the vector Green
function decreases rapidly as k — «. We shall now show that this
condition is not necessary and that the counterterms of the form (7.3)
provide for the finiteness of the Green functions in any renormalizable
gauges, that is, in gauges for which the longitudinal part of the free
Green function of the vector field decreases no more slowly than the
transverse part as k — . The simplest example of such a gauge is the
gauge with f(k?) = 1.

In any such gauge the divergent diagrams have a structure already
discussed above: only diagrams with one, two, three, and four external
lines can diverge. As before, we can choose the constants z,, Z,, z,,,
2y 21,2, dm so as to make all the two-point Green functions and the
vertex functions I, 1"04 finite, and determine the constantsz, z,,, z
by the invariance of the renormalized action:

5 51 — —1 —1
12y TTRRy T 219%9p T Rpyplop (8.25)

Let us show that ratios of the type

r r.
A YA
(FAA),/’ ’ (P%) (I‘AA)‘/’ ’ and so on, (8.26)

where all the external vectors legs are considered to be transverse, on
the mass shell do not depend on the gauge. Indeed, from the formulas
(8.19) and (8.20) it follows that a transfer from one gauge to another
changes the functions under consideration in the following manner (we
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omit the tensor structure):

L (ke By k)—(1+ I, (m))*T 4. (R ko ks),
Toa(t) > (LT, (mPT 0 (B), R=ms  (8.27)

By substituting these expressions into the formula (8.26), we verify the
invariance of this ratio. According to the above demonstration, in the
Lorentz gauge all functions are finite. The function I, is finite due to
the choice of constants z;. Therefore in any gauge the function
T s(ky, ko, k) is finite at k*= m?.Since in renormalizable gauges this
function can diverge only logarithmically, the finiteness of I' 3 at any k;
follows.

The finiteness of all the remaining Green functions is demon-
strated absolutely analogously. We emphasize that now we are con-
sidering Green functions off the mass shell. On the mass shell di-
vergences are absent in all gauges, including the not explicitly re-
normalizable ones (that is to say, gauges for which the longitudinal part
of the Green function of the vector field at large k behaves as k%",
n> —1).

In the renormalizable gauge a finite number of invariant counter-
terms provide for the existence of the Green functions off the mass shell
also. Then the concrete values of the counterterms depend, of course,
on the choice of the gauge. Specifically, in the general gauge the
constant z, is already not finite.

4.9. ANOMALOUS WARD IDENTITIES

In the construction of the unitary renormalized S-matrix we used the
invariant intermediate regularization. The existence of the invariant
regularized action allowed us to obtain the generalized Ward identities
and, using them, to prove the physical equivalence of the unitary and
Lorentz gauges. Generally speaking, it is not necessary to employ the
invariant intermediate regularization. In principle, we could introduce
an arbitrary intermediate regularization and try to choose the counter-
terms in such a manner that the renormalized Green functions would
satisfy the generalized Ward identities. For this, if the regularization is
noninvariant, noninvariant counterterms such as the photon mass re-
normalization in electrodynamics may be required.

In this case, in the regularized theory the relativity principle is
violated, and its correctness in the limit when the intermediate regu-
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larization is removed requires a special investigaticn. It may turn out
that whatever the choice of local counterterms, the renormalized Green
functions will not satisfy the generalized Ward identities. This will lead
to the nonequivalence of different gauges and the inconsistency of the
theory. In this case the unitary renormalized S-matrix does not (at least
in the framework of perturbation theory) exist.

In practice the indicated situation arises when the matrix vy; is
involved in gauge transformations of the fermion fields. In this case
both the above described methods for invariant regularization are
inapplicable. In the framework of the dimensional regularization it
turns out not to be possible to give a consistent definition of the matrix
vs for a space with arbitrary dimensionality. The regularization by
means of the higher covariant derivatives still provides the finiteness of
all multiloop diagrams; however, the invariant regularization of one-
loop diagrams by means of the Pauli—Villars procedure in this case is
impossible, since the mass terms for the fermion fields w;y;y; violate
the vys-invariance. Thus, for one-loop diagrams there is no ys-invariant
regularization, and, as we see, for a number of gauge groups involving
ys-transformations, the Green functions do not satisfy the generalized
Ward identities.

As a simple example, consider a model with the U(1) gauge group,
described by the Lagrangian

1 ) .
L = — 7 (0yAy — 0, AP + ipy, (0, — igAuvs) b,
Vs = — iVoY1V2V3. 9.1)

This Lagrangian is invariant under the Abelian gauge transformations

A, (x) > Ay (x) + 0,A(x),

¥ (1) > eV (x);

Px)—>b(x)e ‘g“” ), 9.2)

and at first sight all the reasoning for the equivalence of various gauges
can be equally applied to it. In the a-gauge the effective Lagrangian has
the form

L= & + 35 QAP 9.3)

where £ is the gauge-invariant expression (9.1). The Lagrangian
(9.3) is nondegenerate and describes not only transversely polarized
quanta of the vector field, but also scalar quanta with zero spin.
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One might take the Lagrangian (9.3) as a starting point and base
the construction of a quantum theory on it. It is well known that such a
theory would be inconsistent physically: the probability of events
involving scalar quanta can take negative values. If, however, the
Green functions generated by the Lagrangian (9.3) satisfy the Ward
identities

1. ( 8z
FIAIA )

- 6z , 67
_Zduju (X) + lg”l (x) V5 6,7‘ (x) + lg 6.“ (x) Y51] (X) } == 0) (94)

where Z is a generating functional of the form

Z=N"" Sexp{i S (L, + 1A, + % + ﬂm]dx} dA dp dvp,
(9.5)

then, as it is easy to show, the matrix elements of transitions between
states involving transversely polarized quanta and states involving
scalar quanta is equal to zero. This means that the S-matrix connecting
“physical” transversely polarized states is unitary. (Strictly speak-
ing, the S-matrix does not exist in the model considered, due to infrared
divergences. It can be shown, however, that all the reasoning may be
applied to the case when the vector field has a nonzero mass and the
infrared divergences are absent.)

Formally, the identity (9.4) follows from the invariance of the
Lagrangian (9.1) under the transformations (9.2). A specific case is the
relation

axl 6™ In VA

=0, n>2, .
W8T () - 8 () | e (9-6)

which demonstrates explicitly the absence of transitions between
transversely and longitudinally polarized states. In reality we are
interested not in the naive identities (9.4), which, strictly speaking,
have no sense because of the divergent integrals involved in them, but in
the corresponding relations for the renormalized Green functions. In
electrodynamics, as also in the non-Abelian models discussed above,
the Green functions satisfy generalized Ward identities which differ
from the “naive” ones only by the renormalization of the charges and

masses involved. This is not so in the model (9.1). The Green function
with three external vector lines, corresponding to the diagram presented
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in Figure 18, does not satisfy the “naive” identities (9.4), no matter
what local counterterms have been chosen. The identity (9.6) means
that the Fourier transform of the three-point vertex function I, .(p, 9),
defined by the equality

Iuva (P, )] Guu' (p) Gvvr (q) Gao’ (p + q) =

ipx i —i6°2 .
= S el Px iy (‘5’u' B MO0 )dx dy, (9.7)

must be transverse:

Puluva (P2 9) = qyTpuva (P, @) =(p + @)a Tyva (P, 9)==0. (9.8)

The explicit calculation of I',,.(p, q), taking into account that the
function I',,(p, q) is symmetric in the arguments (p, w), (g, v),

(—=(p t q),a), gives

i(p+ DaTuva (P ) =— 5o &"¥pegy = 0. (9.9)

Since the index of the diagram in Figure 18 is equal to unity, the
function I',,,(p, q) is defined to the approximation of a first-order
polynomial in p and q. One might try to use this arbitrariness in order to
set the right-hand side of the equality (9.9) equal to zero. It is easy to
see, however, that this is impossible. The most general expression for a
renormalized three-legged vertex function has the form

f‘uva (P, 9)=Tuva(p, ) + C18uvagPp + C28uvapdp, (9.10)

o« ) A

Hlp ¢

Fig. 18. Anomalous triangle diagram.
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where I',,,(p, q) is a symmetric vertex function satisfying the relation
(9.9). By requiring the function l“,m also to be symmetric in the
arguments (u, p), (v, q), (a, — (p + gq)), we obtain

¢;=10cy=0. (9.11)

Thus, there is no possible choice of the local counterterms to make
the renormalized vertex function satisfy the identity (9.8). In con-
sequence, the probability of transition from transversely polarized
states to longitudinal ones is not equal to zero. The model described by
the Lagrangian (9.1) is inconsistent. The stated difficulty is inherent in
all the theories invariant under the Abelian gauge transformations
involving the matrix y;. However, there exists a class of models for
which this difficulty can be avoided. For instance, in the model (9.1),
suppose that besides the field ¢, a field ¢’ is involved, which interacts
with a vector field in the same way as ¥, but differs from the latter in the
sign of the charge:

P = — - OvAy — 0, AN + iy, (0 — igAvs) ¥ +
+ v, O+ igAv) ¥, (9.12)

Then together with the diagram in Figure 18 there is an analogous
diagram, in which the internal lines correspond to the fields ¢'. From
the formula (9.9) it may be seen that the divergence of the anomalous
vertex function is proportional to g°. Therefore, the diagram cor-
responding to ' will give the same contribution to the identity (9.9),

but with opposite sign. As a result, the total vertex function I',,, will
satisfy the normal identities (9.8). By direct calculation it is not difficult
to verify that all the remaining one-loop diagrams satisfy the identities
(9.8). With regard to the diagrams containing more than one loop, the
absence of anomalies can be proved for them in a general form. Indeed,
as was shown in Section 4.3, regularization by means of the higher
covariant derivatives makes all multiloop diagrams in any arbitrary
gauge-invariant theory convergent. Therefore, if there are no anomalies
in the one-loop diagrams, then the multiloop diagrams without doubt
satisfy the normal Ward identities. The absence of anomalies in the
model (9.12) can be explained also in the following way. It is possible
to pass, in the Lagrangian (9.12), to new canonical variables

= {1 =)o+ (1 + v ¥);
b= (14 v b+ (1 — v W) (9.13)
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The interaction Lagrangian expressed in terms of the fields ¢,, ¥, does
not contain the matrices s,

Z1=(gPi1vp1 — gUsvupr) Ay, (9.14)

and represents an analog of the electromagnetic interaction Lagrangian
of two massless spinors. Such a theory is invariant under purely vector
gauge transformations

Py (x) — e'é° (x)¢l (x), 1_l’l (x)— e'ee (x)"]’l (x),

1p2 (x) s e—lga (x)lp2 (x)’ {"2 (x) s eiga (x)\iJ2 (X), (9 1 5)
A, (x) = A, (x) + 0y (x)

and therefore the renormalized Green functions satisfy the normal
Ward identities. Such a mechanism for compensating anomalies may
be used aiso in more realistic models, specifically, in models with
spontaneously broken symmetry. If the fields ¢, ¥', 4, interact also
with scalar fields, then with a corresponding choice of potential all
physical particles may be made to acquire zero masses due to the Higgs
mechanism. At the same time the form of interaction of the spinor and
vector fields responsible for the appearance of anomalies remains
unchanged. Therefore, all the reasoning concerning the compensation
of anomalies remains correct.

Anomalous Ward identities may appear also in non-Abelian
gauge fields. For example, let the spinor fields ¥ interact in a gauge-
invariant manner with the Yang-Mills field:

& =iy, (0, — gl A) v+ ..., (9.16)

and - - - stand for the Lagrangian of the Yang-Mills field and also,
possibly, for the gauge-invariant interaction of the fields 4,, ¥ with
scalar fields. The latter can correspond both to the symmetric theory
and to the theory with spontaneously broken symmetry.

The matrices I¥ realize the representation of the Lie algebra

[Fa’ Fb]=labcrc (9.17)
and can also include the matrix y,;. The divergence of the three-legged

vertex Green function is calculated exactly as in the Abelian case. The
only difference consists in the appearance of an additional factor,
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proprotional to the trace of the product of the I-matrices at the vertex:
i(p+9)aTiva (p, g) =
= const tr {vs['4, [s], I';} €uvapPadp- (9.18)

If the factor

Aabc =tr {YS [rav l1b].|. Pc} (9.19)

is not zero, then the function I'iy, does not satisfy the generalized
Ward identities, which leads to the loss of the gauge-invariance of the
renormalized theory.

Let us analyze in which cases A4, is equal to zero. For this,
instead of the matrix I,, we introduce the chiral matrices T,

L=g(I+WT+5(1=vT (920

where T.. do not contain the matrix ¥s.
The factor 4,,. can not be represented as

Aave =2(Adsc — AZsc), (9.21)

where

Age =tr {13, TF], T2}, (9.22)

A, obviously becomes zero if 4* = 4~. This is certainly fulfilled if the
representations of 7', are unitarily equivalent

T =UTIU", (9.23)
where U is a unitary matrix. In this case, by another choice of the

spinor-field basis, the interaction can be rewritten in a purely vector
form:

Pulab =5 by, {(1 +v5) T + (1 — ) T3} v =
=1]]"YuT:’lp,’ (9.24)
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where

¢’=%(1+Y5)¢+%(1—Y5)U‘P- (9.25)

Under such a redefinition of the fields ¢ the ys-matrices appear in
the mass terms. The absence of the anomalies in such models is
absolutely natural. In the basis §’ the gauge transformations no longer
contain the matrices v;, and therefore one can apply to them the above
described procedure of invariant regularization which allowed us to
prove the generalized Ward identities rigorously. The actual form of the
gauge group is not essential.

Such models are called “vectorlike”, since at high energies,
exceeding significantly all characteristic masses, they behave as
models with purely vector interaction.

The unitary equivalence of T, and T_ is not necessary for the
absence of anomalies. For this the fulfilment of the equality (9.21),
which may be satisfied for other reasons, is sufficient.

Anomalies are absent also if 4],. = A4,,. = 0, as occurs in some
gauge groups. The sufficient condition for this is the following: the
representations realized by the matrixes 7, must be real. (A repre-
sentation is called real if it is unitarily equivalent to its complex
conjugate.) In this case

tr {13, 137, 15} =t {(72), (13)], (1)} =
=—tr {[1Z, T3], T¥} =0. (9.26)

Such a situation is realized for the algebras

SU (2); SO(N), N=5, N+6; S,(2N), N >3;
G(2); E@); ET); E(8), (9.27)

all representations of which are real. For the algebra SU(3) anomalies
are absent only for the representations 8 and 3 +3.

In non-Abelian theories one-loop diagrams with four external
vector lines can also be anomalous. On the other hand, if in the given
model all the one-loop diagrams satisfy the normal Ward identities, the
multiloop diagrams are sure to be free from anomalies. This, as we have
already pointed out, follows directly from the fact that the regulari-
zation by means of the higher covariant derivatives regularizes multi-
loop diagrams in any gauge theory, including those which contain vys-
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transformations. Therefore, multiloop diagrams automatically satisfy
the normal Ward identities.

The above classification of “normal” and “anomalous” theories
equally concerns theories with spontaneously broken symmetry. In the
anomalous case the unitary and the renormalized gauges corre-
spond to physically nonequivalent theories. In the unitary gauge the
theory is not renormalizable, and therefore makes no sense in the
framework of perturbation theory. On the contrary, in a renormalizable
gauge the perturbation theory is constructed without difficulty; how-
ever, the S-matrix is not unitary in the space of physical states. Thus,
requiring the absence of anomalies imposes strict constraints on the
possible gauge-invariant models.



CHAPTER 5

CONCLUSION: SOME APPLICATIONS

In this chapter we shall discuss possible applications of gauge theories
to the description of elementary-particle interactions. The experimental
situation both in weak and in strong interactions is changing very
rapidly and today it is difficult to give preference to any concrete model.
We shall therefore restrict ourselves to the description of the most
characteristic features of gauge-invariant elementary-particle models,
without attempting to reflect the latest trends in this field. The examples
to be considered are educational and illustrative in character.

5.1 UNIFIED MODELS OF WEAK AND
ELECTROMAGNETIC INTERACTIONS

Until recently electrodynamics was the only example of successful
applications in elementary-particle physics of quantum field theory in
general and gauge-invariant theories in particular. At the same time, it
has been noticed for quite a while that weak and electromagnetic
interactions have much in common. From experiments it is known that
weak interactions involve vector currents. This leads to the idea that as
in electrodynamics the interaction takes place through an exchange of
vector particles, which have become known as intermediate bosons.
Like the electromagnetic current, the weak current is conserved. And
finally, the weak interaction is universal—the interaction is char-
acterized by a single constant (if one neglects any effects due to a
mixing of various fundamental particles).

All these properties receive a natural explanation if one assumes
that weak and electromagnetic interactions are described by a gauge-
invariant theory, in which the Yang-Mills field plays the role of the
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interaction carrier. However, unlike the long-range electromagnetic
interaction, the weak interaction has a finite interaction range, and
consequently the corresponding vector fields must be massive. A
second difference is that the weak interaction does not conserve parity.
These differences, which for a long time hindered the construction of a
realistic unified theory of weak and electromagnetic interactions, can
be explained successfully by means of the Higgs mechanism. Spon-
taneous symmetry breaking allows one to select an “electromagnetic”
direction in the internal charge space. The corresponding vector meson
remains massless and interacts with the parity-conserving current. The
other mesons acquire a nonzero mass, and their interaction does not
conserve parity.

Let us consider the simplest realization of these ideas. The choice
of the gauge group is, to a great extent, arbitrary. The dimension of the
group must be not less than three, since it must involve, at a minimum,
the generators corresponding to the photon (1) and the intermediate
vector mesons (2). Taking into account only the “light” leptons—the
electron, the muon, and the corresponding neutrinos—the minimum
number of generators is equal to four. Indeed, the charged weak current
has the following structure:

=y, 1+ v)e=vv, (1 +v5)t ¥, (1.1)

where
ve=(7) (1.2)

(the muon current has an analogous structure).

Therefore the matrices (1 + ;) " and (1 + y;)7r™ are involved in
the Lie algebra of the gauge group. The minimal Lie algebra containing
these matrices consists of the generators

A4yt (I4+v)t, (14vs)71s (1.3)

and corresponds to the SU(2) group. This algebra does not contain a
generator by means of which it could be possible to construct a parity-
conserving electromagnetic current. The simplest algebra generating
both the electromagnetic and the charged currents corresponds to the
group U(2) and contains four generators, one of which corresponds to
the neutral weak current.

Precisely this group forms a basis for the Weinberg-Salam model,
which will be discussed below.
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By not confining oneself to the known ““light” leptons it is possible,
by introducing additional weakly interacting particles, to construct a
unified model with correct charged and electromagnetic currents,
remaining within the group SU(2). Such a model was proposed by
Georgi and Glashow. However, this model does not agree with recent
experimental data, and we shall not discuss it.

The possibilities pointed out are the minimal ones. In the litera-
ture, many models based on more complicated gauge groups are
discussed.

Historically, when the first unified models were being constructed,
neither the neutral currents nor the heavy leptons were known ex-
perimentally. At present both these predictions have been confirmed
experimentally.

Below we shall describe in detail a model based on the group
SU(2) X U(1)—the Weinberg-Salam model In the Weinberg-Salam
model the electron and the electron neutrino are united in an SU,
doublet L and singlet R:

L= +v) (%), R=g0—v)e.  (14)

This choice of the multiplets is due to the fact that the right-hand- and
the left-hand-polarized leptons are involved in the weak interaction
nonsymmetrically—the right-hand-polarized neutrino is not observed
experimentally. The muon and the muon neutrino are united in
analogous multiplets. Henceforth we shall limit ourselves to the con-
sideration of the electron sector. By requiring the weak charged
currents to have a V' — A structure and the photon to interact only with
the vector current of charged particles, we come to the following
transformation law:

L(x)-*L(x)—igTTaC" (x)L(x)—%n(x)L(xH
R(x)>R(x) —igm @) R(x)+ ... (1.5)

Since the group SU(2) X U(1) is not simple, the gauge transformations
involve two arbitrary parameters g and g,. To the subgroups SU(2) and
U(1) there correspond the following gauge fields: the isovector field A%
and the singlet B,

The gauge-invariant Lagrangian describing the interaction of the
multiplets R and L with the Yang—Mills fields has the form
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1 1
L =gt F o F iy — 1 GGy +
thnfoties A+ a ] R0 AR

where # , is the strength tensor of the Yang-Mills field, and G,, is the
analogous tensor for the Abelian field:

G,y = 0yB, — 0,B,. (1.7)
Note that the mass term
m(LR+ RL) (1.8)

for leptons is forbidden by the requirement of invariance under the
transformations (1.5).

All the fields involved in the Lagrangian (1.6) have zero masses.
However, if the fields «,, B, and R, L interact also with scalar fields,
then they may also acquire nonzero masses due to the Higgs effect.
Since all vector mesons, with the exception of the photon, must become
massive, we shall take advantage of the concrete spontaneous-sym-
metry-breaking model (1.3.25). We introduce the complex doublet

—(?
o=(%). (1.9)
which transforms under the gauge transformations in the following way:
. a 18 igl
o> —igl’ (x) 5 ¢ — 5 n(x) 9 (x). (1.10)

The gauge-invariant Lagrangian describing the interaction of ¢ with the
fields &, B,, R, L has the form

a i 2
L =09+ ig 5 Alo+ 3 Buo | —
— —_ 2
— G{(Le) R+ R ("L} + 5 ¢ — A2 (¢7)% (1.11)
As we already know, an interaction of the type (1.11) generates

spontaneous symmetry breaking: the vacuum expectation value of the
field ¢ differs from zero, and to construct the perturbation theory
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around the asymmetric ground state it is necessary to pass to the shifted
fields

P—>¢ = %qi;_r); (Imr =0). (1.12)

As a result of this shift, mass terms for the vector fields appear:
2
SlEAY + S(A) + (e.8,—gA)]  (1.13)

The diagonalization of the quadratic form (1.13) leads to the following
spectrum of masses:
The charged mesons W,

Al 4+ A2
Wiz =—"75"" (1.14)
acquire masses
1
mw—w gr. (1.15)
The neutral mesons
Z,=(g"+ &) "(— gA + g,B,) (1.16)
and
A,=(@+ ) " (a4 + gB,) (1.17)

acquire the masses (r/y/2) (g° + £°)"" and 0, respectively. As a result of
the shift (1.12), the leptons also acquire nonzero masses. The mass
term has the form

_0{ (})R+RO, L Y=—Gree.  (118)

The neutrino remains massless.
Finally, using the expansion

4/- (iBi+ By); @u=r+ v—(c—tBs) (1.19)

we find that the field o acquires a mass 2Ar.
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The Goldstone fields B; have a zero mass and, as usual, can be
removed by a gauge transformation.
The interaction of the leptons with the vector fields has the form

+
Z,= 2\/2 vy, (1 +v)eW, +
Hermitian conjugate -+ (—-——%).7 eyue.»flu +
24 ‘2 } _ g. - 3g2
+ (;@__4_321_)__ VeYu (l + Vvs) ve‘—QQYu Y5+ ml— e Zl’a‘

(1.20)

From this formula it is seen that the electromagnetic constant e and the
Fermi weak-interaction constant G, are expressed in terms of the
parameters g and g, in the following way:

o= x/T‘g‘_i——E' (1.21)
Gr_ & (1.22)
1/2 SmW
From (1.21) it follows that
e<Lg, (1.23)

whence

2 /5 \"
mW—(g ‘/2) /(es(‘f =375 GeV,  (1.24)

that is, the mass of the charged intermediate meson has a lower bound
and is large .

An analogous estimate of the mass of the neutral meson gives

M,= 175 GeV (1.25)

Besides the terms written above, the integration Lagrangian also
describes the self-interaction of the scalar mesons ¢ and their inter-
action with leptons. Since the mass of the o-meson is a free parameter,
it may be chosen to be so large that at attainable energies processes
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involving the o meson are strongly suppressed. This mass, however,
cannot be considered to be arbitrarily large: in the limit m, — <, the
amplitudes to which diagrams with internal o-lines correspond tend to
infinity.

The muon part of the interaction Lagrangian has a form absolutely
identical to (1.20).

The most interesting experimental prediction of the Weinberg—
Salam model is the existence of neutral currents. This prediction has
been brilliantly confirmed.

As concerns the interaction of charged weak currents, the pre-
dictions of the Weinberg—Salam model in lowest order coincide with
the predictions of the phenomenological four-fermion model. But unlike
the latter, the Weinberg—Salam model allows one also to calculate the
radiative corrections of higher orders.

Let us discuss in more detail the renormalization of the Weinberg—
Salam model. Since the Lagrangian (1.6), (1.11) is gauge-invariant, the
renormalization procedure described in the preceding chapter can be
applied to it. However, the gauge group contains the Abelian subgroup
U(1) and, in accordance with the classification of Section 4.8, is
anomalous. Therefore, although formally gauge-invariant, the
Weinberg—Salam model described by the Lagrangian (1.6), (1.11) is
not renormalizable. The situation may be improved by means of the
mechanism described in the preceding chapter. As we saw, anomalies
are absent in the case of any gauge group, if the right-hand- and the
left-hand-polarized fermions give to the anomalous triangle diagram
contributions of equal magnitudes and opposite signs. Therefore, the
introduction in the Weinberg—Salam model, in addition to the electron
multiplets (1.1), of multiplets with opposite helicities

R=g—vw(}) L=g0+v)E (126

interacting with vector fields in the same way as L and R, leads to the
absence of anomalies in such a modified model. Note, however, that for
the L and R it is not possible to use the muon and muon neutrino, since
the “compensating” leptons must be involved in the weak interaction
with opposite helicities. Thus, a renormalized extension of the
Weinberg—Salam model requires the introduction of heavy leptons.

The second possibility, to be discussed further, is based on the use
of mutual compensation of the anomalies of the lepton and hadron
currents.
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Let us now pass to the discussion of the weak and electromagnetic
interactions of hadrons. Similarly to the Weinberg—Salam model,
which predicts the existence of neutral lepton currents, the analogous
model for the hadron sector predicts the existence of weak neutral
hadron currents. If the hadron symmetry group is the group SU(3), then
the neutral current contains strangeness-changing terms. To verify this,
we recall that in the SU(3)-symmetric theory the weak charged hadron
current is described by the Cabbibo formula

it = pv, (1 4 v5) (n cos 8 + Asin6). (1.27)

Here p and n are the proton and neutron quarks with charges % and
—14, A is the strange quark with a charge —%, and @ is the Cabbibo
angle, characterizing the relative probabilities of processes with and
without a change of strangeness.

As in the Weinberg-Salam model for leptons, the generators
corresponding to the charged currents generate the group SU(2).
Therefore the gauge-invariant theory involves, together with the
charged currents (1.27), a neutral current of the form

B=pv,(1+vs)p+
+ (7 cos ® 4 A sin 0) y, (1 4 vs) (n cos 6 4 A sin 6).
(1.28)

The current jfL interacts with the third component of the Yang—Mills
field Ai and consequently represents a linear combination of the
electromagnetic and weak charged currents. As a result such a model
allows processes involving neutral strangeness-changing currents, such
as

Ki—u'n™, K'—>atvs, (1.29)

and the probabilities of these processes should be comparable to the
probabilities of processes involving charged currents. From exper-
iments it is known that processes such as (1.29) are forbidden to a very
high degree of accuracy. The ratio of the decay probability for
K} — p*u” to the probability of the decay K* — u*v,, involving
charged currents, is < 107°. It is possible to forbid such processes
in the gauge-invariant theory by giving up the assumption of the
SU(3) structure of hadrons. The simplest possibility is to substitute
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the group SU(4) for the group SU(3). In the quark model this is
equivalent to the introduction of the fourth quark p’ with a new
quantum number—the “charm”.

The four-quark gauge model of weak and electromagnetic inter-
actions is constructed in the same way as the Weinberg—Salam model
for leptons. The left-hand-polarized quarks are united in two SU(2)
doublets

1 p s
Ll'—_-‘Q‘(l + Y5)(nc039+}.sin9)’
1 P’
]_,2::7(1+Y5)(_nsin6+kc059)' 1'30)
and the right-hand-polarized ones in the singlets
1 1 ’
Rl=-§-(1 — Vs P, R2='2—(1 — Vs P,
3=%(1 — vs) (1 cos 0 4 A sin 6); (1.31)
R =__.%(1 — v5) (— nsin® + A cos 6).

The charged hadron current has the form

+
13

—

=PV, (ncos® -+ Asin0) + ﬁlyu (— nsin® 4 Acos 0) (1.32)

Commuting j} and j,, we obtain for j;, the expression

po=[{i oy i; v]=
= pvu (L +vs) p 4 v, (1 4 vs) n 4+ Ay, (1 4+ v5) . (1.33)

In this current strangeness-changing terms are absent, and conse-
quently processes such as (1.29) are forbidden in the lowest order of the
weak interaction.

We shall not write out here the total gauge-invariant Lagrangian
for the weak and electromagnetic interactions of hadrons. It is entirely
analogous to the Lagrangian (1.3). Its most remarkable feature is the
prediction of ‘‘charmed” hadron states. Recent experiments have
confirmed this prediction of the gauge theories also.
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To complete the description of the models of weak hadron
interactions we recall that, according to the widely accepted point of
view, there exist three varieties of quarks, differing from one another by
their “color”, that is each quark p, p’, n, A can assume three different
“colors”. Weak interactions are not sensitive to the color, and the
corresponding Lagrangian is a sum of three identical Lagrangians. The
hypothesis of the existence of color was put forward in order to explain
the observed spectrum of hadrons within the framework of the usual
assumptions on the relationship between the spin and statistics. Re-
markably, it turned out that introduction of color at the same time
makes the unified model of weak interactions, described above, self-
consistent. In the model involving four leptons u, e, v,, v, and four
quarks of three colors p, p', n, A with charges %, %, —%, —%, anomalies
are absent, and consequently the corresponding theory is renormaliz-
able. In this case the total lepton charge (—2) is equal in magnitude and
opposite in sign to the total charge of the quarks (% X 3 = 2), and for
this reason the anomalies of the lepton and hadron currents are
compensated.

The model described, until recently, has explained all known
experimental facts. From a theoretical point of view it is distinguished
in that it (supposing that quarks have fractional charges) is the only
renormalizable model of weak interactions involving only the light
leptons u, e, v,, v,. However, it is now known that the spectrum of
leptons is not limited to the muon and electron and there exist also
“heavy”’ leptons. Therefore a model with four leptons and four quarks
of three colors is insufficient. There exist many possibilities for the
construction of renormalizable gauge models, involving a large number
of leptons and quarks. Since at present there is no reliable experimental
information allowing one to give preference to any one of the concrete
models, we shall not discuss them here.

5.2. ASYMPTOTIC FREEDOM. GAUGE THEORIES OF
STRONG INTERACTIONS

At first sight the dynamics of strong inteactions seems to be too
complicated to try to describe it in the framework of any reasonable
quantum-field-theory model. Until recently, for the description of
strong interactions either dispersion-relation methods, based on the
most general physical requirements of causality and unitarity, or
phenomenological models have been used. Attempts to construct a
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relativistic Lagrange model, which would give a detailed description of
the dynamics of strong interactions, have not led even to qualitative
results.

On the other hand, deep-inelastic lepton—proton scattering ex-
periments yield evidence that a simple dynamical mechanism forms the
basis of strong interactions. At large momentum transfers, which are
equivalent to small spatial distances, hadrons behave as if they
consisted of noninteracting point objects. Thus, the following quali-
tative picture arises: hadrons are composite objects, and the interaction
between their components tends to zero at small distances. At the same
time, at large distances the effective interaction becomes strong, so that
a hadron is a strongly bound system.

It is possible to describe such an interaction in the framework of
any quantum-field-theory model? The answer to this question turns out
to be unambiguous. The above-described behavior of the interaction
can be obtained only in a non-Abelian gauge theory. All consistent
field-theory models which do not involve the Yang—Mills field lead to
an increase of the effective interaction at small distances. This unique
feature of the Yang-Mills fields is due to the phenomenon of asymp-
totic freedom, to the description of which we shall now pass.

We shall now discuss the asymptotic behavior of the Green
functions in the deep-Euclidean region where the squares of all the
momentum arguments p; are negative and have large absolute values.
This asymptotic behavior has no direct physical meaning, of course,
since for the calculation of the S-matrix the values of the Green
functions at p>= m?> 0 are needed. However, it may be shown that the
probabilities of deep-inelastic scattering processes are directly related
to the behavior of the Green functions in the deep-Euclidean region.

To be more precise, we shall investigate the asymptotic behavior
of strongly connected proper vertex functions I',(xp,,...,%D,., M, &),
where p2= —a?< 0 as k — . For this we shall need the technique of
the renormalization group, the main concepts of which we shall briefly
recall.

As we already know, the subtraction of the leading terms of the
Taylor expansion of divergent proper vertex functions is equivalent to
the insertion in the Lagrangian of local conterterms, which in turn is
equivalent to the renormalization of the parameters involved in the
Lagrangian. The transition from one subtraction point to another is
equivalent to a finite renormalization. For instance, the insertion of the
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counterterms

Ltr (@ — 1) Oyt — Ot +
+ 2g (21 - l) (av'%u - au&lv) [ﬂu: Lle] +
+(Z2 = D[4 SPB+ ... Q@D

(where - - - stands for the corresponding counterterms for fictitious
particles and the fields of matter) is equivalent to the following
renormalizations of the Green functions and the charges:

Gl (k, g)—>27'G], (k, &),
Tylp, g, @21 4(p, g, &),
Tu(k, p, g, @) —>22257'T (R, p, g, &),
g— g =22;"g.

Therefore, the simultaneous insertion of counterterms (2.1) and mul-
tiplication of the coupling constant by z;'z3* does not change the
renormalized coupling constant.

We shall denote the scalar functions appearing after the tensor
structures in G, I'; and I's have been singled out as D, gI,
g°T,. These functions are dlmensmnless and therefore may be repre-
sented in the form

k2 kg m?
D=D A' A,g) I’3—I‘3( cooT 0 &)

k2 kfo m?
r,=r, T T &)

p+q)P etc, (2.3)

2.2)

kRr=p?, ki=gq? k:=

where A is the subtraction point. (The invariant variables are chosen so
that the functions I'; are real at k= A < 0.) Then the condition that the
theory is independent of the choice of the subtraction point, if a change
in the subtraction point is accompanied by a simultaneous com-
pensating charge transformation (the renormalization invariance), can
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be written in the form

k2 m?
D(5 % w)=ab (5 5 2).
(LK)
s\ R R B2

m
—ler'( e TR g1

K K, m )
2 ‘”Tz’ Tg.' 2o

2

k K m?
=27 %Il e, =, g )

M T M M
g, =22;"g,

5.2

We shall consider these functions to be normalized by the condition

D, r‘3, F4= l

atx; = kYA =1.

(2.5)

From the equations (2.4) and the normalization condition it

follows that
A m?
2o = D ('}j ’ —A._z- ’ g?) ’
A A A m?
-1 = i ] AL S
Zl —[H(;w ’ Ag ’ 7‘/2 ’ }"2 ’ g?)‘

Therefore, by introducing the dimensionless variables

k; m? A

xi=xi—, y=T2-, (=A—2.,

the system (2.4) can be written as
Dx, v, =D y, D (5. 4. 2 v, 2)).
Pa(xi oo X3 9, @)=
=T, ...ty Ty (5 ... 2, L,
(s oov X0, 1y, Q)=
=1 g (S E a e,y 0),

* y g)).

o

(2.6)

(2.7)

(2.8)
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where the function 2(¢, y, g)

g, y, @=glslt ... t, y, DIDE vy, " (2.9)

is invariant under the transformations (2.4). This function is called the
invariant charge.

We shall deal with these equations in the deep-Euclidean region
XxX; =xX; ®x — . We shall also assume that

[ A ]>> m2. (2.10)

It can be shown that in the renormalizable theories the main terms in
the asymptotic behavior of the Green functions in the indicated region
are independent of the mass, and therefore in the equations (2.8) one
can put y = 0.

It is convenient to rewrite the system (2.8) in the differentiatial
form. Differentiating (2.8) with respect to ¢ and assuming ¢t = 1, we
obtain

(% o —B(@55) D (uki, 8)=10:(2) D (s, @),
(%55 — B(@) 55 ) T ki, &)= bs(e) Ts (x5, @),

(%2 —B(@) 55 ) T4 (%, @)= (D TauFsy @), (211)

where
og (¢
Ble) =232, 2.12)
AT (t ... 1, aD (¢,
g (g =T b B oy, (=220 8| (213

Analogous equations may obviously be written also for the higher-order
Green functions I' (%X, ,...,%X, g). The invariant charge g satisfies the
simplest equation. Differentiating the invariance condition

g 9=2¢(%. 20 ) (2.14)

with respect to ¢ and assuming ¢ = 1, we have

(% — @) 55) 2 (%, £)=0. (2.15)
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The boundary condition has the form

g(l, g)=g. (2.16)

It is possible to obtain another useful form of the equation for the

invariant charge by differentiating (2.14) with respect to x and then
assuming % = t. Thus, we obtain

x——ﬂ(g) (2.17)

or in the integral form

=Inx. (2.18)

am, e
S da
B (a)
g

By means of the equation (2.15) it is easy to express the solution of
the system (2.11) in terms of the invariant charge. The general solution
has the form

I‘ln ('Wzi’ g)=Fn ('%i’ g) exp{ S ax’ 1pn[ % g)] (7‘) } (219)

From this formula an important conclusion follows: in the asymptotic
region the invariant charge g is the effective parameter characterizing
the interaction strength. Therefore, to obtain information about the
asymptotic behavior of the Green function, it is necessary to know the
behavior of g. From the equations (2.15) and (2.17) it follows that the
behavior of the invariant charge is defined by the properties of the
function B(2). If B(g) is positive, then the invariant charge increases
with %. If at some value of g the function B(g) turns to zero and the
integral on the left-hand side of (2.18) diverges, the the right-hand side
tends to infinity. In other words, as ® — «, g(x, g) — g,, where g, is the
zero of the function B. If the function B has no zeros at 2 > g, then as
® — o, g — o_For a negative B(2) the situation is reversed. The
function g(x, g) decreases as the k increases. If the function §(2) turns
tozeroatg = g, < g,thenas x — ~, g — 2,.

Thus, the zeros of the function B can be stable and unstable. If the
constant g is in the vicinity of a ““stable’ zero g,, then as % increases the
invariant charge g(x, g) tends to g,. In the unstable situation, as «
increases the invariant charge departs farther and farther from g,. It
tends either to the next zero or to infinity. Both these cases are
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presented graphically in Figure 19. From this figure it may be seen that
the stable and unstable zeros alternate with each other.

In practice the only reliable way of calculating the B-function is by
perturbation theory. Therefore, in reality we can judge its behavior only
in the vicinity of the point g = 0. If in the vicinity of g = 0 the 8
function is negative, then as % increases the invariant charge tends to
zero. In this case it is said that the zero is an ultraviolet-stable point,
and the theory is asymptotically free. This last statement signifies that
as the energy increases the effective interaction becomes weaker and
weaker, and at small distances the particles behave as free ones. In the
case, when the B-function is positive near zero, the effective charge
increases with the energy, as a result of which we go beyond the range
of applicability of perturbation theory.

In most quantum-field-theory models a second possibility is
realized. For example, in electrodynamics in the lowest order of «

Blo)=-2. (2.20)

Substituting this value into the formula (2.18), we obtain

ax, a)= a .
’ o (2.21)
l——1Inx
3n
As is seen, as % increases @&(x, a) increases, and at x = e3¢ it goes to

infinity. Of course, in reality at x ~ €™ the formula (2.21) cannot be
used, since the function  has been calculated assuming the effective
coupling constant to be small.

If we nevertheless try to extrapolate the formula (2.21) to the
region of large &, we immediately come to a contradiction. In the
electrodynamics the invariant charge is related to the photon Green

¢ ¢
Aﬁ” z/
N

Fig. 19. Stable and unstable zeros of the B-function.
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function by

a(x, a)=oad (x, a), (2.22)

where
1 kyky
Duv(t)=— (g —22)d(#, 0. (23

Therefore, if the denominator in the expression (2.21) becomes equal
to zero, that means the photon Green function has a pole. It is not
difficult to verify that the residue at this pole is negative. The corre-
sponding state has a negative norm, which is incompatible with the
unitarity condition. Thus, in the case of f(g) > 0 at g ~ 0, the
perturbation theory cannot give any reliable information about the
asymptotic behavior of the Green functions.

Quite different is the case of the Yang—Mills theory. In this theory
B(g) is negative in the vicinity of zero, and consequently zero is an
ultraviolet-stable point. Indeed, by definition

B(g)= 2808 (2.24)

o =1

where in the case of the Yang-Mills field the invariant charge is equal
to

g% (x, g)=gI'D’ (%). (2.25)
Since % = k?*/A,
2 == -(%lw = - (2.26)
On the other hand,
D (—’;i)hk: =— 52wz (7) |L=A, (2.27)
()= etra), em

Therefore, for the definition of B(g) we can use the values of z;
determined previously. Thus we obtain

4
B&) = — 5 - (2.29)
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Consequently, the square of the invariant charge tends to zero as
® — ©:

_ 1
g%, g)= : . (2.30)
gt 22
+ G@n? 3 In%

In the deep-Euclidean region the interaction “dies out” and the
theory behaves as free. For the case of an arbitrary gauge group, and
taking into account the interaction with the fields of matter, the function
B{z) is given by the formula

B@=[—5CO+3TR] &, @3
where
8%C (G) = t*°*°;, T (R)d* =tr {I'*, I%}, (2.32)

where ¢ are the structure constants of the group and I’ are the
generators of the representation realized by ‘the fields of matter. If the
number of multiplets of the fields of matter is not too large, then in this
case also the theory is asymptotically free.

Thus, if the Yang-Mills fields are the carriers of the strong
interactions, then at small distances quasifree particles will indeed be
observed, in agreement with deep-inelastic scattering experiments.

Contrariwise, at ¥ < 1 the effective coupling constant increases.
Of course, in this case the formula (2.30) obtained by means of the
perturbation theory cannot be used. Nevertheless, if the S-function has
no zeros at g > 0, the it follows from the equation (2.18) that

g(x, g§—>o0, »—0. (2.33)

Such a behavior of the invariant charge would mean that with in-
creasing the distance the interaction strength would increase indef-
initely, and consequently the particles would not be able to withdraw
from each other to large distances.

The qualitative picture described above is realized in the hypo-
thetical model of strong interactions known as ‘“quantum chro-
modynamics”. In this model hadrons are considered to be quark bound
states. There exist several types of quarks, differing from each other by
the quantum number “flavor”. Strangeness and charm are examples of
“flavors”. Each quark in its turn can exist in three varieties, differing in
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“color”. Thus, the quarks are represented by the following matrix:

y
l Cp €y €y | (2.34)
Y

Here the indices r, y, b stand for the “colors™ (red, yellow, blue) and
the letters u, d, ¢, s indicate the various flavors. The interaction
between quarks is due to the exchange of colored Yang—Mills fields,
that is, “gluons”. The gauge group SU; acts in the color space. The
Yang-Mills fields form a color octet and are neutral with respect to
“flavors”. The strong-interaction Lagrangian has the form

L = gt AT F i} + G v, [0, — g1 (4] — m) g;
q=u, d, (235)

The color SU§ symmetry is assumed to be exact. This means that
the Yang—Mills fields have a mass exactly equal to zero.

The observed spectrum of hadrons is generated by colorless quark
bound states, which are singlets with respect to the group SUS. In the
approximation where all quarks have equal masses, the Lagrangian
(2.35) is invariant under the transformations of the group SU, acting in
the space of flavors. Therefore, it is convenient to classify the spectrum
of baryons with respect to the group SU [until recently the most
popular candidate for the SU” group was the group SU(4)]. In reality
the symmetry of the SU” is broken, so degeneracy in the masses within
the hadron multiplets is absent. The most problematic thing in this
scheme is why quarks are not observed experimentally and why,
notwithstanding the fact that the Yang—Mills fields have zero mass, the
strong interactions have a finite range. For an explanation the quark-
confinement hypothesis, based on the assumption that the theory
described by the Lagrangian (2.35) is asymptotically free, has been put
forward. In the spirit of the discussion following Equation (2.10) it is
assumed that due to the asymptotic freedom the effective coupling
constant increases infinitely as the distance between the interacting
objects increases. As a result, the colored objects—quarks and
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gluons—can never withdraw from each other to macroscopic distances.
Only colorless bound states corresponding to real hadrons are ob-

servable. The effective interaction of these bound complexes has a

finite range and it is just this range which is observed in experiments at
moderate energies.
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NOTES

As was pointed out in the preface, our book is supplementary to the
already existing manuals on quantum field theory, the closest to ours
being the monograph *““An Introduction to the Theory of Quantized
Fields” [1] by N. N. Bogolubov and D. V. Shirkov. Unlike most hand-
books on quantum field theory, this one describes the quantum
dynamics mainly by means of the path integral. The application of this
method to quantum-mechanical problems is expounded in the book of
R. Feynman and A. Hibbs [2], and the monographs recently published
by A. N. Vasil'ev [3] and V. N. Popov [4] are dedicated to the use of
this method in the theory of systems with an infinite number of degrees
of freedom. The classical geometrical aspects of gauge fields have been
considered in a monograph by N. P. Konoplyova and V. N. Popov [5],
and their quantization and application to elementary-particle models
have been briefly described in the book by J. Taylor [6].

Chapter I

Gauge fields were first introduced in physics in the work of C. N. Yang
and R. L. Mills [7] for fields carrying the interaction of isotopic spins.
The natural generalization to the case of internal degrees of freedom of
a more general nature is discussed, for example, in the publications
[8,9,10].

Feynman was the first to draw attention to the specific character of
the quantization of non- Abelian gauge fields [11]. His approach, based
on the reconstruction of diagrams with loops by means of tree dia-
grams, was developed by De Witt [12], who formulated the final rules
for quantization of gauge fields and gravity fields in [13]. An inde-
pendent derivation of the rules of perturbation theory for these theories,
based on the path integration, was obtained by L. D. Faddeev and
V. N.Popov in [14] (see also [15]). The publications [16,17,18] are
also dedicated to the construction of the perturbation theory for gauge
fields. The hypothesis stated in Feynman’s lectures [11] that the
perturbation theory for gauge fields may be obtained in the limit m — 0
of the theory of massive vector fields turned out to be incorrect[19,20].
The first realistic unified interaction models, based on the Higgs
mechanism [21,22,23], were formulated by S. Weinberg [24] and
A Salam [25].
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In 1971 °t Hooft extended the quantization procedure for Yang-
Mills fields to the case of theories with spontaneously broken symmetry
[26]. In 1971-1972, in a series of publications by A. A. Slavnov
[27,28], J. Taylor[29], B. Lee and J. Zinn-Justin [30], and G. t Hooft
and M. Veltman [31], the methods were developed of invariant regular-
ization and renormalization for the theory of gauge fields (including
models with spontaneously broken symmetry), and thus the con-
struction of the quantum theory of gauge fields in the framework of
perturbation theory was completed. Various aspects of the theory of
gauge fields and their applications have been presented in reports at
international conferences on high-energy physics by B. Lee [32],
J. Illiopoulos [33], and A. Slavnov [34].

From the viewpoint of differential geometry the classical Yang-
Mills field represents a connection in the principal fiber-bundle space,
the basis of which is the space-time manifold and a typical fiber of
which is the internal symmetry group. The concept of connection,
generalizing the Euclidean connection in the Riemann space, has been
developed starting from the twenties in the work of many geometers,
specifically, of H. Weyl and E. Cartan. Its modern formulation first
appeared in the work of Ehresmann [35]. An excellent introduction to
the theory of fiber bundles and connections may be found in the book
by Lischnerovitch [36].

In the twenties, due to the success of the theory of general
relativity, many attempts were made to geometrize the electromagnetic
field. A correct view of this field as a part of the connection involved in
the covariant derivative of the complex fields appeared in the work of
H. Weyl [37] and V. A. Fock [38] on the formulation of the Dirac
equation in the gravitational field H. Weyl speaks directly about
electrodynamics as the general relativity theory in the charge space.

The classical solutions of the equations of motion involving gauge
fields have been a subject of intensive research during the last three
years. We give references to some of the main publications in this field
[39,40,41,42], in which solutions for the vacuum and the soliton sector
are studied.

Chapter 11

The path integral was first introduced for the formulation of quantum
mechanics by Feynman. The history and main concepts may be found
in the monograph [2]. The Feynman diagrams in the perturbation
theory, first introduced in[43], were substantiated by means of the path
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integral in [44]. The monographs [3,4] contain a more up-to-date
review of the applications of the path-integral method in quantum
physics. The interpretation of the path-integral method in the present
book follows the lectures of one of the authors [45]. The introduction of
the path integral in quantum mechanics by the formula (2.1.12) is
adopted from the work of Tobocman [46]. The holomorphic repre-
sentation of quantum mechanics is from the work of V. A. Fock; it
appeared under the name of coherent states in quantum optics. Its
mathematical formulation may be found in the monograph of
F. A. Berezin [47]. There also the first rigorous exposition of the
integration over anticommuting variables is given.

The boundary conditions in the path integral were considered by
O. I. Zav’yalov [48] and A. N. Vasil’ev [3].

The Green functions were introduced in the quantum field theory
by J. Schwinger [49]. The idea of reducing the calculation of the S-
matrix to the problem of the calculation of the S-matrix for scattering
by an external source also belongs to Schwinger [50].

The introduction of the path integral in terms of the Gaussian
functional was outlined in the first edition of the monograph [1]. The
exposition in the present book of the axiomatics of the path integral by
means of the Gaussian functional follows the work of one of the authors
[51]. A similar approach was developed also in [52].

Chapter 111

The generalized Hamiltonian dynamics was first introduced by Dirac
[53] (see also his lectures [S4]). The Hamiltonian formulation of gauge
theories in the Coulomb gauge was investigated by J. Schwinger [S5].
The general formulation of the path integral in the generalized Hamil-
tonian form was given by one of the authors [56]. The Hamilton gauge
Ay, = 0, less popular than the Coulomb one d;4; = 0, formed the basis
for the construction of the gauge field theory in Feynman’s lectures
[57].

The change-of-variables method in the path integral to pass from
one gauge to another was proposed in [14]. Its geometrical inter-
pretation in terms of various parametrizations of gauge-equivalent
classes is discussed in [56,58]. The generalized a-gauges were first
considered accurately in [13] (see also [17,56]). The method of
transition to the a-gauge, described in the present book, is adopted from
the work of G. ’t Hooft [26].
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Chapter IV

The renormalization theory goes back to the ideas of H. A. Kramers
[59] and H. A. Bethe [60]. A number of authors, including R. P.
Feynman, J. Schwinger, F. Dyson, A. Salam, and others, took part in
its development. The complicated mathematically rigorous renormal-
ization theory (the theory of R-operation) was first constructed in the
work of N. N. Bogolubov and O. S. Parasyuk [61]. An excellent expo-
sition of the R-operation may be found in the monograph [1], where a
detailed bibliography on the renormalization theory is also presented.

Regularization by means of higher covariant derivatives was first
propounded in the work of A. A. Slavnov [62] and then applied to the
Yang-Mills theory in [28,30]. The additional regularization of one-
loop diagrams, described in Section 4.4, was constructed in [63].

The dimensional regularization was proposed in the work by
G.’t Hooft and M. Veltman [31], C. G. Bollini and J. G. Giabidgi
[64], and J. F. Ashmore [65].

The identities relating two- and three-point Green functions in
quantum electrodynamics were first obtained by J. C. Ward [66]. The
generalized relations, connecting any Green function with the function
containing one external photon line less, were obtained by E. S.
Fradkin[67] and Y. Takahashi [68]. The electrodynamical Ward iden-
tities are not generalizable directly to the case of non-Abelian gauge
fields. In the non-Abelian theory their role is played by the so-called
generalized Ward identities, first obtained by A. A Slavnov [27] and
J. C. Taylor [29]. Their derivation, given in the present book, follows
[69]. An alternative derivation based on the use of the invariance of the
effective Lagrangian with respect to some transformation with anticom-
muting parameters (supertransformation) was proposed by C. Becchi,
A. Rouet, and R. Stora [70]. In the literature the generalized Ward
identities for single-particle irreducible Green functions, obtained by
B. W. Lee [71] (see also [52]), are also used. The structure of the
renormalized action was investigated in [27,29,30,31], as a result of
which there appeared a proof of gauge-invariance and unitarity of the
renormalized S-matrix. Another approach to the renormalization of
gauge theories, based on the use of the formalism of the Zimmerman
normal products, was developed by C. Becchi, A. Rouet, and R. Stora
[70,72].

The dependence of the renormalization constants and the Green
functions on the choice of the gauge condition is discussed in detail in
the work by R. Callosh and I. Tyutin [73].

The anomalous Ward identities were first studied by S. L. Adler
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[74] and by S. Bell and R. Jackiw [75]. Their role in the problem of the
renormalization of gauge theories was discussed in [76-79]. The
classification of anomalous interactions presented in this book follows
the work by H. Georgi and S. Glashow [79].

Chapter V

The first (and until now the most popular) realistic unified model of
weak and electromagnetic interactions was constructed by S. Weinberg
[24] and A. Salam [25]. There exist a large number of unified models
differing from the Weinberg-Salam model either in the choice of the
gauge group or in the multiplets involved. Some of them are presented
in review reports [32,33,34]. At present the choice of one or another of
the models has not been settled.

The mechanism of suppression of the strangeness-changing neutral
currents by the introduction of a new ‘“‘charmed” quark was pro-
pounded by S. Glashow, J. Illiopoulos, and L. Maiani [80].

The hypothesis of the existence of an additional degree of freedom
of the quarks, which became known as “color’”’, was first proposed in
the work of O. Greenberg [80], of N. N. Bogolubov, B. V. Struminsky,
and A. N. Tavkhelidze [82], and of M. Y. Han and Y. Nambu [83] for
the explanation of the hadron statistics. In the work of J. Pati and
A. Salam [84], of H. Fritzsch, M. Gell-Mann, and H. Leutwyller [85],
and S. Weinberg [86] it was first suggested that strong interactions take
place owing to the exchange of Yang—Mills mesons interacting with the
color degrees of freedom. The corresponding hypothetical model was
named quantum chromodynamics

The group features of the renormalization transformations were
first drawn attention to by E. C. G. Stueckelberg and A. Peterman
[87]. The group of muitiplicative renormalizations in quantum electro-
dynamics was used by M. Gell-Mann and F. Low [88] for the investi-
gation of the ultraviolet asymptotics of the Green functions. The
general theory of the renormalization group was constructed in the
work of N. N. Bogolubov and D. V. Shirkov [89,90]. A detailed ex-
position of this theory may be found in the monograph [1]. The
differential equations of the renormalization group were investigated by
L. V. Ovsyannikov [91]. Analogous equations were obtained for the
case of quantum field theory by C. Callan [92] and K. Symanzik [93].
The asymptotic freedom of the Yang-Mills fields was discovered by
G.’t Hooft [94], by D. Gross and F. Wilczek [95], and by
H. D. Politzer [96]. The hypothesis of ‘“quark confinement” was
discussed in [85,86,97,98].
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NOTATION

(x, y) are points in the Minkowski space, and (x, ¢), (y, s) or (x, X,),
(», y,) are their space and time components, respectively.

The metric tensor g*¥ has the form diag(1, —1, —1, —1).

All vectors are assumed to be covariant; ab = a,b, = aby —
(a, b) is the scalar product of the four-dimensional vectors a, b with the
components a,b,; the components of four-dimensional vectors are
labeled by Greek letters, and of three-dimensional vectors by Latin
letters.

The constants 7 and ¢, unless otherwise stated, are taken to be
equal to unity.
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INDEX

Anomalies, 189-197
cancellation of, 193-197
Anticommuting variables, 49
Asymptotic freedom, 207-208, 213
of Yang-Mills theory, 214-215

Beta function, 211-213

of Yang-Mills theory, 214-215
Bianchi identity, 12
BRS transformations

see supertransformations

Causal Green function
derivation from path integral, 39
for Dirac equation, 57
for gauge fields, 90-94
in Higgs theories, 113
Charmed particles, 206
Coherent states, 221
Color, 216
Constraints, 73
Covariant derivative, 5
Curvature of charge space, 11-12

Deep Euclidean region, 208-211
Deep inelastic scattering, 208
Degree of divergence, 128-129
see also primitively divergent
diagrams
Dirac formalism, 73

Effective coupling constant, 211
Evolution operator
in quantum mechanics, 23
for fermions, 55

Feynman integration formula, 119
Feynman propagator

see causal Green’s function
Fictitious fields,

introduced, 98
Field tensor, 11-12
Flavor, 215-216

Gauge conditions, 8-9
admissibility, 9
oy = 0 gauge, 82
Coulomb gauge, 77
general covariant gauges, 96-98
in Higgs theories, 19-20, 106-117
Lorentz gauge, 88
Gauge invariance, 4-7
Gauge transformation, 4-7
Gaussian integrals, 34
for fermions, 51, 53-54
in scalar field theory, 59-60
Generalized Hamilton dynamics, 73
Generating functional, 41, 48
for Yang—Mills fields, 99
Ghosts, 98
Grassman algebra, 49
Gravitation, analogy with
Yang-Mills theory, 10
Gupta-Bleuler formalism, 71

Hamiltonian dynamics, Dirac form
73-77
Higgs effect, 17-21
see also spontaneously broken
gauge theories, Weinberg-
Salam model



232 Index

Holomorphic functions, anticom-
muting variables, 49-50

Intermediate regularization, 118-119
Invariant charge, 211

Lie groups, 3-4
SU(2), 15
SU(3), 16

Magnetic monopoles, 17

Neutral currents, 204-205
conservation of strangeness,
206-207
Normal product, 31
Normal symbol
for commuting fields, 31
for fermions, 52, 54-55

Parallel transport, 10-12
Path integrals, 18-29
change of variables, 67-68
definition of delta function, 63-67
Fermi fields, 49-59
holomorphic representation, 29-35
integration by parts, 59-60
Lagrangian form, 26-27
repeated integrals, 61-63
see also Gaussian integrals,
perturbation theory
Perturbation theory
derived from path integral, 39-40
for fermions, 58
in Higgs theories, 112-117
properties of path integrals in,
59-68
for Yang—-Mills fields, 99-101
Poisson brackets, 73
Primitively divergent diagrams
in Yang-Mills theory, 164-166
in Yang-Mills theory with matter
fields, 176177

Quantum chromodynamics, 215-216
Quark confinement, 103, 216-217

Renormalization, 118-126
degree of divergence, 128-129
dimensional regularization,
137-138, 146-159
gauge-invariant Pauli-Villars, 136—
146
Pauli-Villars, 133-136
R-operation, 126-131
Renormalization group, 208-212

Scattering matrix, 28, 35-48
for fermions, 57
gauge invariance of, 181-189
Spontaneously broken gauge
theories, 18
quantization, 104-117
see also Weinberg-Salam model
Supertransformations, 161-162
used to derive Ward identities,
163-164

Ward identities, 154-164
anomalous, 189-197
functional derivation, 155-157
in renormalized theory, 169
with arbitrary gauge condition,
163-164
with matter fields, 160-162
Weinberg-Salam model, 201-207
anomalies, 204, 207
incorporation of quarks, 205-206

Yang—Mills field, passim.
Coulomb propagator, 80-81
difficulty with quantization, 71-72
equations of motion, 14-15, 70
first order formalism, 72
geometrical interpretation, 10-14
Hamiltonian formulation, 72-77
interaction with matter, 14-21
Lagrangian, 13
perturbation theory, 99-101
S-matrix, path integral form,

78-80



